Immobilization of Yeast
Immobilization of yeast is another valuable technique applicable to industrial ethanol fermentation due to its high cell density, greater volumetric productivity, tolerance to higher concentrations of substrate and products, relative ease of downstream processing, and most importantly, easy reusability. Many forms of solid support materials have been tested for cell immobilization, varying from natural materials like wood chips to synthesized polymers like
Pretreatment |
Saccharification and fermentation configuration |
Fermentative microorganism |
EtOH yield |
Reference |
|
mg/g consumed sugars |
mg/g untreated wheat straw |
||||
H2so4 |
SSF |
K. marxiamis |
— |
45 |
[145] |
H2so4 |
SHF |
P. tannophilus |
380 |
98 |
[146] |
Steam explosion |
SSF |
S. cerevisiae |
— |
120 |
[147] |
Steam explosion |
SSF |
S. cerevisiae |
— |
132 |
[148] |
Biological (I lacteiis) |
SHF |
P. tannophilus |
430±11 |
128±2 |
[149] |
Biological (I lacteiis) |
SSF |
P. tannophilus |
440±14 |
143±2 |
[149] |
Biological (I lacteiis) |
C6/C5 |
P. tannophilus/ S. cerevisiae |
421±12 |
99±2 |
[149] |
Biological (I lacteiis) |
H5-SSF |
P. tannophilus |
452±10 |
163±4 |
[149] |
Biological (I lacteiis) SHF |
SHF |
S. cerevisiae |
484±13 |
97±4 |
[149] |
Conditioning+biological (I. lacteiis) |
SHF |
S. cerevisiae |
481±11 |
161±3 |
[150] |
Biological (I lacteiis) |
SHF |
S. cerevisiae |
— |
123±5 |
[151] |
Biological (I lacteiis) |
SSF |
S. cerevisiae |
— |
144 |
[152] |
Biological (P. chrysosporium) |
SSF |
S. cerevisiae |
62 |
[153] |
|
Biological (C. subvermispora) |
SSF |
S. cerevisiae |
— |
120 |
[154] |
Table 8.8 Ethanol yields for corn stover under different pretreatment and fermentation configurations and references. |
318 Handbook of Cellulosic Ethanol |
polyacrylamide, polyurethane and polyethylene. A representative list of some solid supports used in the immobilization of yeast is given in Table 8.9. There are advantages and disadvantages in all these solid supports; for example, synthesized polymers are nonbiodegradable and could cause toxic effects on cell growth. For natural polymers, although they demonstrate non-toxic, biocompatible, biodegradable and antimicrobial properties, they have the problems of unsatisfactory mechanical strength and insufficient space for live cells, which could lead to cell breakdown and leakage to the medium [155]. Then there is some interest in immobilization of yeast cells on membranes, which will further enhance the recyclability. Additionally, the entrapment type of immobilization could cause physical constraints for cell growth and the natural adsorption cannot satisfy the stability requirements [156]. Therefore, one of the promising aspects for immobilization is self-flocculation on supporting materials, which seems to have superior attributes among the yeast cell immobilization technologies in terms of the simple process and natural environment for cell growth [157-159].
Sing and coworkers recently reported a comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices [163]. In this experiment, first alkali pretreated sugarcane bagasse was enzymatically hydrolyzed by crude unprocessed enzymes: cellulase (filter paper activity 9.4 FPU/g), endoglucanase (carboxymethylcellulase, 148 IU/g), ^-glucosidase (116 IU/g) and xylanase (201 IU/g) produced by Aspergillus flavus. Then the resulting sugar solution was exposed to Saccharomyces cerevisiae immobilized on sugarcane bagasse, calcium alginate and agar-agar for the production of ethanol. Fermentation parameters used in batch fermentation of sugarcane bagasse enzymatic hydrolyzate with immobilized cells of S. cerevisiae and the ethanol yields for different solid supports are shown in Table 8.10.
The yield of ethanol was 0.44 g ethanol/g bagasse in the case of yeast immobilized sugarcane bagasse, 0.38 gp/gs using Ca-alginate and 0.33 g ethanol/g bagasse using agar-agar as immobilization matrices. The immobilized yeast was used up to 10 cycles in the case of immobilized sugarcane bagasse and up to 4 cycles in the case of agar-agar and calcium alginate, for ethanol production under repeated batch fermentation conditions. With all three solid supports, studied ethanol yield reached their maximum values after about 36 hr, as shown in the Figure 8.8 time course of ethanol production by S. cerevisiae from microwave alkali pretreated sugarcane
Table 8.9 Some solid materials used in immobilization of yeast and their references.
|
Table 8.10 Fermentation parameters obtained in batch fermentation of sugarcane bagasse enzymatic hydrolyzate with S. cerevisiae cells immobilized on sugarcane bagasse, calcium alginate and agar-agar [163].
Total incubation time 72 h; maximum ethanol was produced within 36 h of incubation. |
Figure 8.8 Time course of ethanol production by S. cerevisiae from alkali pretreated sugarcane bagasse hydrolyzate (ISB: immobilized on sugarcane bagasse; ICA: immobilized on calcium alginate; IAA: immobilized on agar-agar). (Reprinted with permission from reference [163]; copyright 2012 Elsevier). |
bagasse hydrolyzate (ISB: immobilized on sugarcane bagasse; ICA: immobilized on calcium alginate; IAA: immobilized on agar-agar).
1. L. R. Lynd, Overview and evaluation of fuel ethanol from cellu — losic biomass: Technology, economics, the environment, and policy. Annual Review of Energy and the Environment, 1996. 21(1): p. 403-465.
2. E. Palmqvist and B. Hahn-Hagerdal, Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology, 2000. 74(1): p. 25-33.
3. E. Palmqvist and B. Hahn-Hagerdal, Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresource Technology, 2000. 74(1): p. 17-24.
4. W. G. Lee, J. S. Lee, C. S. Shin, S. C. Park, H. N. Chang, and Y. K. Chang, Ethanol production using concentrated Oak Wood hydrolysates and methods to detoxify. Applied Biochemistry and Biotechnology — Part A Enzyme Engineering and Biotechnology, 1999. 77-79: p. 547-559.
5. J. R. Weil, B. Dien, R. Bothast, R. Hendrickson, N. S. Mosier, and M. R. Ladisch, Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Industrial and Engineering Chemistry Research, 2002. 41(24): p. 6132-6138.
6. Z. Yu and H. Zhang, Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass and Bioenergy, 2003. 24(3): p. 257-262.
7. M. Cantarella, L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani, Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochemistry, 2004. 39(11): p. 1533-1542.
8 . M. A. Khiyami, A. L. Pometto Iii, and R. C. Brown, Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. Journal of Agricultural and Food Chemistry, 2005. 53(8): p. 2978-2987.
9. P. Persson, J. Andersson, L. Gorton, S. Larsson, N. O. Nilvebrant, and
L. J. Jonsson, Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. Journal of Agricultural and Food Chemistry, 2002. 50(19): p. 5318-5325.
10. A. Martinez, M. E. Rodriguez, M. L. Wells, S. W. York, J. F. Preston, and L. O. Ingram, Detoxification of dilute acid hydrolysates of lignocel — lulose with lime. Biotechnology Progress, 2001. 17(2): p. 287-293.
11. L. Olsson and B. Hahn-Hagerdal, Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme and Microbial Technology, 1996. 18(5): p. 312-331.
12. P. Persson, S. Larsson, L. J. Jonsson, N. O. Nilvebrant, B. Sivik, F. Munteanu, L. Thorneby, and L. Gorton, Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnology and Bioengineering, 2002. 79(6): p. 694-700.
13. E. Palmqvist, H. Grage, N. Q. Meinander, and B. Hahn-Hagerdal, Main and interaction effects of acetic acid, furfural, and p- hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering, 1999. 63(1): p. 46-55.
14. J. M. Oliva, I. Ballesteros, M. J. Negro, P. Manzanares, A. Cabanas, and
M. Ballesteros, Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus. Biotechnology Progress, 2004. 20(3): p. 715-720.
15. J. M. Oliva, F. Saez, I. Ballesteros, A. Gonzalez, M. J. Negro,
P. Manzanares, and M. Ballesteros, Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Applied Biochemistry and Biotechnology — Part A Enzyme Engineering and Biotechnology, 2003. 105(1-3): p. 141-154.
16. J. Zaldivar, A. Martinez, and L. O. Ingram, Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 1999. 65(1): p. 24-33.
17. J. Zaldivar, A. Martinez, and L. O. Ingram, Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 2000. 68(5): p. 524-530.
18. M. Balat, Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 2011. 52(2): p. 858-875.
19. M. Balat, H. Balat, and C. Oz, Progress in bioethanol processing. Progress in Energy and Combustion Science, 2008. 34(5): p. 551-573.
20. O. J. Sanchez and C. A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 2008. 99(13): p. 5270-5295.
21. K. R. Szulczyk, B. A. McCarl, and G. Cornforth, Market penetration of ethanol. Renewable and Sustainable Energy Reviews, 2010. 14(1): p. 394-403.
22. M. Galbe and G. Zacchi, A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology, 2002. 59(6):
p. 618-628.
23. S. Tian, J. Zang, Y. Pan, J. Liu, Z. Yuan, Y. Yan, and X. Yang, Construction of a recombinant yeast strain converting xylose and glucose to ethanol. Frontiers of Biology in China, 2008. 3(2): p. 165-169.
24. T. W. Jeffries and N. Q. Shi, Genetic engineering for improved xylose fermentation by yeasts. Advances in Biochemical Engineering/ Biotechnology, 1999. 65: p. 117-161.
25. N. W.Y. Ho, Z. Chen, and A. P. Brainard, Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 1998. 64(5): p. 1852-1859.
26. J. M. Rodriguez-Pena, V. J. Cid, J. Arroyo, and C. Nombela, The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiology Letters, 1998. 162(1): p. 155-160.
27. B. Johansson, C. Christensson, T. Hobley, and B. Hahn-Hagerdal, Xylulokinase Overexpression in Two Strains of Saccharomyces cerevisiae Also Expressing Xylose Reductase and Xylitol Dehydrogenase and Its Effect on Fermentation of Xylose and Lignocellulosic Hydrolysate. Applied and Environmental Microbiology, 2001. 67(9): p. 4249-4255.
28. Y. S. Jin, S. Jones, N. Q. Shi, and T. W. Jeffries, Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Applied and Environmental Microbiology, 2002. 68(3): p. 1232-1239.
29. Y. S. Jin, H. Ni, J. M. Laplaza, and T. W. Jeffries, Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Applied and Environmental Microbiology, 2003. 69(1): p. 495-503.
30. M. H. Toivari, A. Aristidou, L. Ruohonen, and M. Penttila, Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering, 2001. 3(3): p. 236-249.
31. A. Matsushika and S. Sawayama, Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. Journal of Bioscience and Bioengineering, 2008. 106(3): p. 306-309.
32. K. Karhumaa, R. Fromanger, B. Hahn-Hagerdal, and M. F. Gorwa — Grauslund, High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2007. 73(5): p. 1039-1046.
33. J. H. Van Vleet and T. W. Jeffries, Yeast metabolic engineering for hemicellulosic ethanol production. Current Opinion in Biotechnology, 2009. 20(3): p. 300-306.
34. M. Moniruzzaman, B. S. Dien, C. D. Skory, Z. D. Chen, R. B. Hespell,
N. W.Y. Ho, B. E. Dale, and R. J. Bothast, Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain. World Journal of Microbiology and Biotechnology, 1997. 13(3): p. 341-346.
35. M. Sonderegger, M. Jeppsson, B. Hahn-Hagerdal, and U. Sauer, Molecular Basis for Anaerobic Growth of Saccharomyces cerevisiae on Xylose, Investigated by Global Gene Expression and Metabolic Flux Analysis. Applied and Environmental Microbiology, 2004. 70(4): p. 2307-2317.
36. J. Zhao and L. Xia, Ethanol production from corn stover hemicel — lulosic hydrolysate using immobilized recombinant yeast cells. Biochemical Engineering Journal, 2010. 49(1): p. 28-32.
37. H. Ni, J. M. Laplaza, and T. W. Jeffries, Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Applied and Environmental Microbiology, 2007. 73(7):
p. 2061-2066.
38. C. Bro, B. Regenberg, J. Forster, and J. Nielsen, In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metabolic Engineering, 2006. 8(2): p. 102-111.
39. J. Hou, G. N. Vemuri, X. Bao, and L. Olsson, Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2009. 82(5): p. 909-919.
40. D. Brat, E. Boles, and B. Wiedemann, Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2009. 75(8): p. 2304-2311.
41. J. Zhao and L. Xia, Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Processing Technology, 2010. 91(12): p. 1807-1811.
42. C. Martin, M. Galbe, C. F. Wahlbom, B. Hahn-Hagerdal, and L. J. Jonsson, Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2002. 31(3): p. 274-282.
43. D. J. Hayes, An examination of biorefining processes, catalysts and challenges. Catalysis Today, 2009. 145(1-2): p. 138-151.
44. N. Entner and M. Doudoroff, Glucose and gluconic acid oxidation of Pseudomonas saccharophila. The Journal of Biological Chemistry, 1952. 196(2): p. 853-862.
45. P. Gunasekaran and K. Chandra Raj, Ethanol fermentation technology — Zymomonas mobilis. Current Science, 1999. 77(1): p. 56-68.
46. J. C. Saez-Miranda, L. Saliceti-Piazza, and J. D. McMillan, Measurement and analysis of intracellular ATP levels in metabolically engineered Zymomonas mobilis fermenting glucose and xylose mixtures. Biotechnology Progress, 2006. 22(2): p. 359-368.
47. M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio, Metabolic engineering of a pentose metabolism pathway in ethanolo- genic Zymomonas mobilis. Science, 1995. 267(5195): p. 240-243.
48. K. Deanda, M. Zhang, C. Eddy, and S. Picataggio, Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Applied and Environmental Microbiology, 1996. 62(12): p. 4465-4470.
49. R. C. Kuhad, R. Gupta, Y. P. Khasa, A. Singh, and Y. H.P. Zhang, Bioethanol production from pentose sugars: Current status and future prospects. Renewable and Sustainable Energy Reviews, 2011. 15(9): p. 4950-4962.
50. A. Mohagheghi, K. Evans, Y. C. Chou, and M. Zhang, Cofermentation of glucose, xylose, and arabinose by genomic dna-integrated xylose/ arabinose fermenting strain of Zymomonas mobilis AX101. Applied Biochemistry and Biotechnology — Part A Enzyme Engineering and Biotechnology, 2002. 98-100: p. 885-898.
51. E. L. Joachimsthal and P. L. Rogers, Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Applied Biochemistry and Biotechnology — Part A Enzyme Engineering and Biotechnology, 2000. 84-86: p. 343-356.
52. B. S. Dien, N. N. Nichols, P. J. O’Bryan, and R. J. Bothast, Development of new ethanologenic Escherichia coli strains for fermentation of lig — nocellulosic biomass. Applied Biochemistry and Biotechnology — Part A Enzyme Engineering and Biotechnology, 2000. 84-86: p. 181-196.
53. M. Agrawal, Y. Wang, and R. R. Chen, Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Biotechnology Letters,
2012: p. 1-8.
54. B. Hahn-Hagerdal, M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi, Bio-ethanol — the fuel of tomorrow from the residues of today. Trends in Biotechnology, 2006. 24(12): p. 549-556.
55. D. Abril and A. Abril, Ethanol from lignocellulosic biomass. Ciencia e Investigation Agraria, 2009. 36(2): p. 177-190.
56. B. C. Saha and M. A. Cotta, Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5. Bioengineered Bugs, 2012. 3(4).
57. B. C. Saha, N. N. Nichols, and M. A. Cotta, Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresource Technology, 2011. 102(23): p. 10892-10897.
58. B. C. Saha, N. N. Nichols, N. Qureshi, and M. A. Cotta, Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Applied Microbiology and Biotechnology, 2011. 92(4): p. 865-874.
59. A. Avci and S. Donmez, Effect of zinc on ethanol production by two Thermoanaerobacter strains. Process Biochemistry, 2006. 41(4): p. 984-989.
60. L. Larsen, P. Nielsen, and B. K. Ahring, Thermoanaerobacter mathra — nii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Archives of Microbiology, 1997. 168(2): p. 114-119.
61. G. M. Cook and H. W. Morgan, Hyperbolic growth of Thermoanaerobacter thermohydrosulfuricus (Clostridium thermo — hydrosulfuricum) increases ethanol production in pH-controlled batch culture. Applied Microbiology and Biotechnology, 1994. 41(1): p. 84-89.
62. R. Lamed and J. G. Zeikus, Glucose fermentation pathway of Thermoanaerobium brockii. Journal of Bacteriology, 1980. 141(3): p. 1251-1257.
63. S. Baskaran, H. J. Ahn, and L. R. Lynd, Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnology Progress, 1995. 11(3): p. 276-281.
64. B. L. Knutson, H. J. Strobel, S. E. Nokes, K. A. Dawson, J. A. Berberich, and C. R. Jones, Effect of pressurized solvents on ethanol production by the thermophilic bacterium Clostridium thermocellum. Journal of Supercritical Fluids, 1999. 16(2): p. 149-156.
65. T. I. Georgieva, I. V. Skiadas, and B. K. Ahring, Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer Thermoanaerobacter A10: Modeling and simulation. Biotechnology and Bioengineering, 2007. 98(6): p. 1161-1170.
66. L. R. Lynd, W. H. Van Zyl, J. E. McBride, and M. Laser, Consolidated bioprocessing of cellulosic biomass: An update. Current Opinion in Biotechnology, 2005. 16(5): p. 577-583.
67. T. W. Jeffries and Y. S. Jin, Ethanol and thermotolerance in the bioconversion of xylose by yeasts, 2000. p. 221-268.
68. M. Ballesteros, J. M. Oliva, M. J. Negro, P. Manzanares, and I. Ballesteros, Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxia — nus CECT 10875. Process Biochemistry, 2004. 39(12): p. 1843-1848.
69. L. P. Huang, B. Jin, P. Lant, and J. Zhou, Simultaneous saccharification and fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal, 2005. 23(3): p. 265-276.
70. B. S. Dien, M. A. Cotta, and T. W. Jeffries, Bacteria engineered for fuel ethanol production: Current status. Applied Microbiology and Biotechnology, 2003. 63(3): p. 258-266.
71. D. Chu, J. Zhang, and J. Bao, Simultaneous Saccharification and Ethanol Fermentation of Corn Stover at High Temperature and High
Solids Loading by a Thermotolerant Strain Saccharomyces cerevisiae DQ1. Bioenergy Research, 2012. 5(4): p. 1020-1026.
72. M. Jin, C. Gunawan, V. Balan, M. W. Lau, and B. E. Dale, Simultaneous saccharification and co-fermentation (SSCF) of AFEX™ pretreated corn stover for ethanol production using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresource Technology, 2012. 110: p. 587-594.
73. M. Vincent, A. L. Pometto Iii, and J. H. van Leeuwen, Simultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011. Journal of Microbiology and Biotechnology, 2011. 21(7): p. 703-710.
74. I. Watanabe, N. Miyata, A. Ando, R. Shiroma, K. Tokuyasu, and T. Nakamura, Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. Bioresource Technology, 2012. 123: p. 695-698.
75. H. S. Oberoi, N. Babbar, S. K. Sandhu, S. S. Dhaliwal, U. Kaur, B. S. Chadha, and V. K. Bhargav, Ethanol production from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. Journal of Industrial Microbiology and Biotechnology, 2012. 39(4): p. 557-566.
76. A. M. Badawi, A. A. Fahmy, K. A. Mohamed, M. R. Noor El-Din, and M. G. Riad, Enhancement of ethanol production by simultaneous saccharification and fermentation (SSF) of rice straw using ethoxyl — ated span 20. Preparative Biochemistry and Biotechnology, 2012. 42(1): p. 44-59.
77. Y. Shinozaki and H. K. Kitamoto, Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. Journal of Bioscience and Bioengineering, 2011. 111(3): p. 320-325.
78. K. Y. Won, Y. S. Kim, and K. K. Oh, Comparison of bioethanol production of simultaneous saccharification and fermentation and separation hydrolysis and fermentation from cellulose-rich barley straw. Korean Journal of Chemical Engineering, 2012. 29(10): p. 1341-1346.
79. B. Karki, B. Rijal, and S. W. Pryor, Simultaneous saccharification and fermentation of aqueous ammonia pretreated oat straw for ethanol production. Biological Engineering Transactions, 2011. 4(3): p. 157-166.
80. N. Pessani, H. K. Atiyeh, M. R. Wilkins, D. Bellmer, and I. M. Banat. Simultaneous saccharification and fermentation of switchgrass by thermotolerant kluyveromyces marxianus IMB3: Effect of enzyme loading, temperature and operating mode. 2011.
81. N. K. Pessani, H. K. Atiyeh, M. R. Wilkins, D. D. Bellmer, and I. M. Banat, Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: The effect of enzyme loading, temperature and higher solid loadings. Bioresource Technology, 2011. 102(22): p. 10618-10624.
82. Z. S. Zhu, M. J. Zhu, W. X. Xu, and L. Liang, Production of bioethanol from sugarcane bagasse Using NH 4OH-H 2O 2 pretreatment and simultaneous saccharification and co-fermentation. Biotechnology and Bioprocess Engineering, 2012. 17(2): p. 316-325.
83. J. R.A. Santos, M. S. Lucena, N. B. Gusmao, and E. R. Gouveia, Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Industrial Crops and Products, 2012. 36(1): p. 584-588.
84. L. Wang, Z. Luo, and A. Shahbazi, Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Industrial Crops and Products, 2013. 42(1): p. 280-291.
85. B. Rohowsky, T. Hafiler, A. Gladis, E. Remmele, D. Schieder, and M. Faulstich, Feasibility of simultaneous saccharification and juice cofermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Applied Energy, 2013. 102: p. 211-219.
86. Z. Qureshi, S. Mehmood, M. U. Hassan, T. U. Rahman, M. Z. Hyder, M. F. Malik, M. Gulfraz, and N. Akhtar, Simultaneous saccharification and fermentation of sorghum bicolour grains by ethanol and sugar tolerated saccharomyces cerevisiae. Asian Journal of Chemistry, 2012. 24(3): p. 1162-1166.
87. Y. S. Lin and W. C. Lee, Simultaneous saccharification and fermentation of alkali-pretreated cogongrass for bioethanol production. BioResources, 2011. 6(3): p. 2744-2756.
88. M. Yasuda, A. Miura, T. Shiragami, J. Matsumoto, I. Kamei, Y. Ishii, and K. Ohta, Ethanol production from non-pretreated napiergrass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11. Journal of Bioscience and Bioengineering, 2012. 114(2): p. 188-192.
89. S. Akao, K. Maeda, S. Nakatani, Y. Hosoi, H. Nagare, M. Maeda, and T. Fujiwara, Comparison of simultaneous and separate processes: Saccharification and thermophilic L-lactate fermentation of catch crop and aquatic plant biomass. Environmental Technology (United Kingdom), 2012. 33(13): p. 1523-1529.
90. C. Carrasco, H. Baudel, M. Penarrieta, C. Solano, L. Tejeda, C. Roslander, M. Galbe, and G. Liden, Steam pretreatment and fermentation of the straw material "Paja Brava" using simultaneous
saccharification and co-fermentation. Journal of Bioscience and Bioengineering, 2011. 111(2): p. 167-174.
91. X. Qi, Y. Tang, H. Jian, X. Li, and J. Jiang, Production of lactic acid by simultaneous saccharification and fermentation using steam pretreated lespedeza stalks as inexpensive raw materials, 2011. p. 1404-1411.
92. M. Monrroy, J. R. Garcia, R. T. Mendonga, J. Baeza, and J. Freer, Kraft pulping of eucalyptus globulus as a pretreatment for bioethanol production by simultaneous saccharification and fermentation. Journal of the Chilean Chemical Society, 2012. 57(2): p. 1113-1117.
93. A. Romani, G. Garrote, and J. C. Parajo, Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel, 2012. 94(0): p. 305-312.
94. C. Munoz, J. Baeza, J. Freer, and R. T. Mendonga, Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation. Journal of Industrial Microbiology and Biotechnology, 2011. 38(11): p. 1861-1866.
95. T. Q. Lan, R. Gleisner, J. Y. Zhu, B. S. Dien, and R. E. Hector, High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresource Technology, 2013. 127: p. 291-297.
96. H. Franco, R. T. Mendonga, P. D. Marcato, N. Duran, J. Freer, and J. Baeza, Diluted acid pretreatment of pinus radiata for bioethanol production using immobilized saccharomyces cerevisiae IR2-9 in a simultaneous saccharification and fermentation process. Journal of the Chilean Chemical Society, 2011. 56(4): p. 901-906.
97. J. Y. Zhu, R. Gleisner, C. T. Scott, X. L. Luo, and S. Tian, High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: A comparison between SPORL and dilute acid pretreatments. Bioresource Technology, 2011. 102(19): p. 8921-8929.
98. J. Y. Lee, P. Li, J. Lee, H. J. Ryu, and K. K. Oh, Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresource Technology, 2013. 127: p. 119-125.
99. J. S. Jang, Y. K. Cho, G. T. Jeong, and S. K. Kim, Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess and Biosystems Engineering, 2012. 35(1-2): p. 11-18.
100. J. Prasetyo, K. Naruse, T. Kato, C. Boonchird, S. Harashima, and E. Y. Park, Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin
and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels, 2011. 4.
101. L. Dwiarti, C. Boonchird, S. Harashima, and E. Y. Park, Simultaneous saccharification and fermentation of paper sludge without pretreatment using cellulase from Acremonium cellulolyticus and thermotolerant Saccharomyces cerevisiae. Biomass and Bioenergy, 2012. 42: p. 114-122.
102. K. Sangkharak, Optimization of enzymatic hydrolysis for ethanol production by simultaneous saccharification and fermentation of waste — paper. Waste Management and Research, 2011. 29(11): p. 1134-1144.
103. S. K. Sandhu, H. S. Oberoi, S. S. Dhaliwal, N. Babbar, U. Kaur, D. Nanda, and D. Kumar, Ethanol production from Kinnow mandarin (Citrus reticulata) peels via simultaneous saccharification and fermentation using crude enzyme produced by Aspergillus oryzae and the thermotolerant Pichia kudriavzevii strain. Annals of Microbiology, 2012. 62(2): p. 655-666.
104. A. Romani, G. Garrote, and J. C. Parajo, Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel, 2012. 94: p. 305-312.
105. Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 2002. 83(1): p. 1-11.
106. M. W. Lau, C. Gunawan, V. Balan, and B. E. Dale, Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellu — losic ethanol production. Biotechnology for Biofuels, 2010. 3.
107. L. Olsson and B. Hahn-Hagerdal, Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochemistry, 1993. 28(4): p. 249-257.
108. N. Van Wyk, R. Den Haan, and W. H. Van Zyl, Heterologous coproduction of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2010. 87(5): p. 1813-1820.
109. W. H. Van Zyl, L. R. Lynd, R. Den Haan, and J. E. McBride, Consolidated bioprocessing for bioethanol production using saccharomyces cerevi — siae, 2007. p. 205-235.
110. T. Hasunuma and A. Kondo, Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry, 2012. 47(9): p. 1287-1294.
111. T. Sakamoto, T. Hasunuma, Y. Hori, R. Yamada, and A. Kondo, Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Journal of Biotechnology, 2012. 158(4): p. 203-210.
112. S. Saitoh, T. Tanaka, and A. Kondo, Co-fermentation of cellulose/ xylan using engineered industrial yeast strain OC-2 displaying both S-glucosidase and S-xylosidase. Applied Microbiology and Biotechnology, 2011. 91(6): p. 1553-1559.
113. H. Kroukamp, R. Den Haan, N. Van Wyk, and W. H. Van Zyl, Overexpression of native PSE1 and SOD1 in Saccharomyces cerevi — siae improved heterologous cellulase secretion. Applied Energy, 2013. 102: p. 150-156.
114. M. A. O’Malley, M. K. Theodorou, and C. A. Kaiser, Evaluating expression and catalytic activity of anaerobic fungal fibrolytic enzymes native topiromyces sp E2 inSaccharomyces cerevisiae. Environmental Progress and Sustainable Energy, 2012. 31(1): p. 37-46.
115. N. Khramtsov, L. McDade, A. Amerik, E. Yu, K. Divatia, A. Tikhonov, M. Minto, G. Kabongo-Mubalamate, Z. Markovic, M. Ruiz-Martinez, and S. Henck, Industrial yeast strain engineered to ferment ethanol from lignocellulosic biomass. Bioresource Technology, 2011. 102(17): p. 8310-8313.
116. E. Jeon, J. E. Hyeon, D. J. Suh, Y. W. Suh, S. W. Kim, K. H. Song, and S. O. Han, Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera S-glucosidase genes. Molecules and Cells, 2009. 28(4): p. 369-373.
117. C. D. Skory, S. N. Freer, and R. J. Bothast, Expression and secretion of the candida wickerhamii extracellular S-glucosidase gene, bglB, in saccharomyces cerevisiae. Current Genetics, 1996. 30(5): p. 417-422.
118. G. Takada, T. Kawaguchi, J. I. Sumitani, and M. Arai, Expression of Aspergillus aculeatus No. F-50 Cellobiohydrolase I (cbhI) and S-glucosidase 1 (bgl1) genes by Saccharomyces cerevisiae. Bioscience, Biotechnology and Biochemistry, 1998. 62(8): p. 1615-1618.
119. P. Van Rensburg, W. H. Van Zyl, and I. S. Pretorius, Engineering yeast for efficient cellulose degradation. Yeast, 1998. 14(1): p. 67-76.
120. R. Van Rooyen, B. Hahn-Hagerdal, D. C. La Grange, and W. H. Van Zyl, Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. Journal of Biotechnology, 2005. 120(3): p. 284-295.
121. L. Gurgu, A. Lafraya, J. Polaina, and J. Marfn-Navarro, Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the S-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresource Technology, 2011. 102(8): p. 5229-5236.
122. R. Den Haan, S. H. Rose, L. R. Lynd, and W. H. van Zyl, Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 2007. 9(1): p. 87-94.
123. E. Jeon, J. E. Hyeon, L. Sung Eun, B. S. Park, S. W. Kim, J. Lee, and S. O. Han, Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovo — rans endoglucanase and Saccharomycopsis fibuligera ^-glucosidase. FEMS Microbiology Letters, 2009. 301(1): p. 130-136.
124. R. Yamada, N. Taniguchi, T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo, Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnology for Biofuels, 2011. 4(1).
125. A. Kondo and M. Ueda, Yeast cell-surface display — Applications of molecular display. Applied Microbiology and Biotechnology, 2004. 64(1): p. 28-40.
126. Z. P. Guo, L. Zhang, Z. Y. Ding, Z. H. Gu, and G. Y. Shi, Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Enzyme and Microbial Technology, 2011. 49(1): p. 105-112.
127. Y. Fujita, J. Ito, M. Ueda, H. Fukuda, and A. Kondo, Synergistic Saccharification, and Direct Fermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered Yeast Strain Codisplaying Three Types of Cellulolytic Enzyme. Applied and Environmental Microbiology, 2004. 70(2): p. 1207-1212.
128. Y. Fujita, S. Takahashi, M. Ueda, A. Tanaka, H. Okada, Y. Morikawa, T. Kawaguchi, M. Arai, H. Fukuda, and A. Kondo, Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Applied and Environmental Microbiology, 2002. 68(10): p. 5136-5141.
129. Y. Matano, T. Hasunuma, and A. Kondo, Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource Technology, 2012. 108: p. 128-133.
130. S. Yanase, T. Hasunuma, R. Yamada, T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo, Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology, 2010. 88(1): p. 381-388.
131. N. Nakamura, R. Yamada, S. Katahira, T. Tanaka, H. Fukuda, and A. Kondo, Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of S-glucosidase on its cell surface. Enzyme and Microbial Technology, 2008. 43(3): p. 233-236.
132. A. Kondo, H. Shigechi, M. Abe, K. Uyama, T. Matsumoto, S. Takahashi, M. Ueda, A. Tanaka, M. Kishimoto, and H. Fukuda, High-level ethanol production from starch by a flocculent Saccharomyces cerevisi — aestrain displaying cell-surface glucoamylase. Applied Microbiology and Biotechnology, 2002. 58(3): p. 291-296.
133. S. I. Yamakawa, R. Yamada, T. Tanaka, C. Ogino, and A. Kondo, Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Applied Microbiology and Biotechnology, 2010. 87(1): p. 109-115.
134. M. Ueda and A. Tanaka, Cell surface engineering of yeast: Construction of arming yeast with biocatalyst. Journal of Bioscience and Bioengineering, 2000. 90(2): p. 125-136.
135. K. Kavanagh and P. A. Whittaker, Application of the melle-boinot process to the fermentation of xylose by Pachysolen tannophilus. Applied Microbiology and Biotechnology, 1994. 42(1): p. 28-31.
136. S. A. Shojaosadati, H. R. Sanaei, and S. M. Fatemi, The use of biomass and stillage recycle in conventional ethanol fermentation. Journal of Chemical Technology and Biotechnology, 1996. 67(4): p. 362-366.
137. N. Kiran Sree, M. Sridhar, K. Suresh, I. M. Banat, and L. Venkateswar Rao, High alcohol production by repeated batch fermentation using an immobilized osmotolerant Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2000. 24(3): p. 222-226.
138. G. Suzzi, P. Romano, L. Vannini, L. Turbanti, and P. Domizio, Cell — recycle batch fermentation using immobilized cells of flocculent Saccharomyces cerevisiae wine strains. World Journal of Microbiology and Biotechnology, 1996. 12(1): p. 25-27.
139. K. Ma, M. Wakisaka, K. Sakai, and Y. Shirai, Flocculation characteristics of an isolated mutant flocculent Saccharomyces cerevisiae strain and its application for fuel ethanol production from kitchen refuse. Bioresource Technology, 2009. 100(7): p. 2289-2292.
140. Y. Matano, T. Hasunuma, and A. Kondo, Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-dis — playing yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresource Technology, 2013. 135: p. 403-409.
141. M. Ask, K. Olofsson, T. Di Felice, L. Ruohonen, M. Penttila, G. Liden, and L. Olsson, Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochemistry, 2012. 47(10): p. 1452-1459.
142. K. Ojeda, E. Sanchez, M. El-Halwagi, and V. Kafarov, Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: Comparison of SHF, SSF and SSCF pathways. Chemical Engineering Journal, 2011. 176-177: p. 195-201.
143. E. Tomas-Pejo, J. M. Oliva, M. Ballesteros, and L. Olsson, Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnology and Bioengineering, 2008. 100(6): p. 1122-1131.
144. A. Wingren, M. Galbe, and G. Zacchi, Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnology Progress, 2003. 19(4): p. 1109-1117.
145. N. Fu, P. Peiris, J. Markham, and J. Bavor, A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme and Microbial Technology, 2009. 45(3): p. 210-217.
146. I. Romero, S. Sanchez, M. Moya, E. Castro, E. Ruiz, and V. Bravo, Fermentation of olive tree pruning acid-hydrolysates by Pachysolen tannophilus. Biochemical Engineering Journal, 2007. 36(2): p. 108-115.
147. I. Ballesteros, M. J. Negro, J. M. Oliva, A. Cabanas, P. Manzanares, and M. Ballesteros, Ethanol production from steam-explosion pretreated wheat straw. Applied Biochemistry and Biotechnology, 2006. 130(1-3): p. 496-508.
148. M. Linde, E. L. Jakobsson, M. Galbe, and G. Zacchi, Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass and Bioenergy, 2008. 32(4): p. 326-332.
149. M. Lopez-Abelairas, T. A. Lu-Chau, and J. M. Lema, Fermentation of biologically pretreated wheat straw for ethanol production: Comparison of fermentative microorganisms and process configurations. Applied Biochemistry and Biotechnology, 2013: p. 1-15.
150. M. Lopez-Abelairas, M. Alvarez Pallin, D. Salvachua, T. Lu-Chau, M. J. Martinez, and J. M. Lema, Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess and Biosystems Engineering, 2012: p. 1-10.
151. D. Salvachua, A. Prieto, M. Lopez-Abelairas, T. Lu-Chau, A. T. Martinez, and M. J. Martinez, Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresource Technology, 2011. 102(16): p. 7500-7506.
152. L. Song, F. Ma, Y. Zeng, X. Zhang, and H. Yu, The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresource Technology, 2013. 135: p. 89-92.
153. J. S. Bak, J. K. Ko, I. G. Choi, Y. C. Park, J. H. Seo, and K. H. Kim, Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 2009. 104(3): p. 471-482.
154. C. Wan and Y. Li, Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology, 2010. 101(16): p. 6398-6403.
155. L. M.A. Escobar, U. S. Alvarez, and M. Penuela, Yeast immobilization in lignocellulosic wastes for ethanol production in packed bed bioreactor. Revista Facultad de Ingenieria, 2012(62): p. 66-76.
156. W. Yao, X. Wu, J. Zhu, B. Sun, Y. Y. Zhang, and C. Miller, Bacterial cellulose membrane — A new support carrier for yeast immobilization for ethanol fermentation. Process Biochemistry, 2011. 46(10): p.2054-2058.
157. X. M. Ge, L. Zhang, and F. W. Bai, Impacts of temperature, pH, divalent cations, sugars and ethanol on the flocculating of SPSC01. Enzyme and Microbial Technology, 2006. 39(4): p. 783-787.
158. D. Yin, C. Liu, F. Li, X. Ge, and F. Bai, Development of observed kinetic model for self-flocculating yeast. Huagong Xuebao/CIESC Journal, 2011. 62(11): p. 3149-3155.
159. Z. Yan, L. H. Zi, N. Li, F. Wang, and F. W. Bai, Continuous ethanol fermentation using self-flocculating yeast in multi-stage suspended bioreactors coupled with directly recycling of waste distillage. Chinese Journal of Biotechnology (Sheng wu gong cheng xue bao), 2005. 21(4): p. 628-632.
160. M. Moo-Young, J. Lamptey, and C. W. Robinson, Immobilization of yeast cells on various supports for ethanol production. Biotechnology Letters, 1980. 2(12): p. 541-548.
161. C. Karbaum and R. Kleine, The use of plant cell vesicles for immobilization of yeast cells producing ethanol. Acta Biotechnologica, 1991. 11(3): p. 287-300.
162. J. N. De Vasconcelos, C. E. Lopes, and F. P. De Franga, Continuous ethanol production using yeast immobilized on sugar-cane stalks. Brazilian Journal of Chemical Engineering, 2004. 21(3): p. 357-365.
163. A. Singh, P. Sharma, A. K. Saran, N. Singh, and N. R. Bishnoi, Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renewable Energy, 2013. 50: p. 488-493.
164. C. M. Zheng, X. H. Sun, F. X. Zhang, Y. L. Yang, G. J. Wu, and N. J. Guan, Immobilization yeast of Al alginate-based pseudo-boehmite for ethanol production. Huaxue Gongcheng/Chemical Engineering (China), 2009. 37(12): p. 47-50.
165. P. Karagoz, E. Erhan, B. Keskinler, and M. Ozkan, The use of microporous divinyl benzene copolymer for yeast cell immobilization and ethanol production in packed-bed reactor. Applied Biochemistry and Biotechnology, 2009. 152(1): p. 66-73.
166. S. Yan, X. Chen, J. Wu, and P. Wang, Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Applied Microbiology and Biotechnology, 2012. 94(3): p. 829-838.
167. C. Zheng, X. Sun, L. Li, and N. Guan, Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate- based MCM-41 mesoporous zeolite composite carrier. Bioresource Technology, 2012. 115: p. 208-214.
168. A. Rattanapan, S. Limtong, and M. Phisalaphong, Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Applied Energy, 2011. 88(12): p. 4400-4404.
169. A. Sakurai, Y. Nishida, H. Saito, and M. Sakakibara, Ethanol production by repeated batch culture using yeast cells immobilized within porous cellulose carriers. Journal of Bioscience and Bioengineering, 2000. 90(5): p. 526-529.
170. N. Barron, D. Brady, G. Love, R. Marchant, P. Nigam, L. McHale, and A. P. McHale, Alginate-Immobilized thermotolerant yeast for conversion of cellulose to ethanol, 1996. p. 379-383.
171. Y. Sakai, Y. Tamiya, and F. Takahashi, Enhancement of ethanol formation by immobilized yeast containing iron powder or Ba-ferrite due to eddy current or hysteresis. Journal of Fermentation and Bioengineering, 1994. 77(2): p. 169-172.
172. Z. Lu and T. Fujimura, A study on ethanol production of yeast cells immobilized with polymer carrier produced by radiation polymerization. Radiation Physics and Chemistry, 1993. 42(4-6 -6 pt 2): p. 923-926.
173. C. T.H. Tran, A. Kondyurin, W. Chrzanowski, M. M.M. Bilek, and D. R. McKenzie, Influence of pH on yeast immobilization on polystyrene surfaces modified by energetic ion bombardment. Colloids and Surfaces B: Biointerfaces, 2013. 104: p. 145-152.
174. T. A. Mamvura, S. E. Iyuke, V. Sibanda, and C. S. Yah, Immobilisation of yeast cells on carbon nanotubes. South African Journal of Science, 2012. 108(7-8).
175. A. Rapoport, D. Borovikova, A. Kokina, A. Patmalnieks, N. Polyak,
I. Pavlovska, G. Mezinskis, and Y. Dekhtyar, Immobilisation of yeast cells on the surface of hydroxyapatite ceramics. Process Biochemistry, 2011. 46(3): p. 665-670.
176. I. Stolarzewicz, E. Bialecka-Florjanczyk, E. Majewska, and
J. Krzyczkowska, Immobilization of yeast on polymeric supports. Chemical and Biochemical Engineering Quarterly, 2011. 25(1): p. 135-144.