Аэростатные солнечные электростанции
Одним из основных сдерживающих факторов развития солнечной энергетики является проблема выбора места для размещения солнечных электростанций.
Мощность солнечного излучения на поверхности Земли при безоблачном небе составляет около 1 кВт/м2. Для получения электроэнергии в промышленных масштабах необходимы мощности порядка миллиона киловатт. Это значит, что для промышленной солнечной электростанции с коэффициентом полезного действия порядка 10% и с учетом неравномерности мощности солнечного излучения в течение суток необходима площадь в десятки квадратных километров (http:// www. t3000.ru).
Площадка для размещения приемников солнечного излучения должна быть ровной, пригодной для обслуживания и ремонта оборудования, свободной от хозяйственной деятельности человека.
Найти подходящую площадку, удовлетворяющую этим требованиям, чрезвычайно сложно даже в пустынях Австралии и Северной Африки, не говоря уже о густонаселенных странах Европы и Азии.
Идеальным решением этой проблемы является размещение солнечных электростанций на поверхности морей и океанов, площадь которых в пять раз больше, чем площадь суши. Однако, традиционные солнечные электростанции не пригодны для морского базирования.
Ситуация коренным образом изменилась после изобретения солнечных аэростатных электростанций («Энергия», №4, 2005). Принципиальная схема солнечной аэростатной электростанции приведена на рис. 3.25.
Принцип работы солнечной аэростатной электростанции с паровой турбиной заключается в поглощении поверхностью баллона аэростата солнечного излучения и нагрева за счет этого водяного пара, находящегося внутри баллона. Современные селективные поглощающие материалы способны нагреваться от прямых неконцентрированных солнечных лучей до 200 °С и более.
Оболочка баллона выполнена двухслойной. Внешняя
^ Конденсатор водяного пара
оболочка является прозрач-
НОЙ И пропускает солнечное Рис 3-25- Принципиальная схема солнечной
‘ ,, аэростатной электростанции
излучение. Внутренняя оболочка покрыта селективным поглощающим слоем и разогревается солнечным излучением до 150—180 °С.
Слой воздуха между оболочками является теплоизолятором, уменьшающим потери тепла в атмосферу.
Температура пара внутри баллона составляет 130—150 °С. Давление внутри баллона равно атмосферному давлению.
Из баллона пар по гибкому паропроводу подается на паровую турбину, и после турбины конденсируется в конденсаторе. Из конденсатора вода насосом вновь подается внутрь баллона, распыляется и испаряется при контакте с перегретым водяным паром.
Основным достоинством паровой аэростатной установки является то, что запаса водяного пара, находящегося во внутренней полости аэростата, достаточно для бесперебойной работы паровой турбины в темное время суток.
Из-за подачи водяного пара на турбину и охлаждения за счет теплообмена с окружающим воздухом за ночь подъемная сила аэростата уменьшится на 10—20%, что не влияет на положении аэростата. В дневное время в результате нагрева солнечным излучением происходит генерация пара не только для работы паровой турбины, но и для восполнения запаса водяного пара во внутренней полости аэростата.
Мощность турбогенератора можно совершенно безболезненно изменять в течение суток в соответствии с нуждами потребителя.
При атмосферном давлении плотность наружного воздуха равна 1,3 кг/м3, а плотность водяного пара внутри баллона равна 0,6 кг/м3. Таким образом, подъемная сила одного кубического метра баллона составляет 0,7 кг/м3.