Солнечная электростанция 30кВт - бизнес под ключ за 27000$

15.08.2018 Солнце в сеть




Производство оборудования и технологии
Рубрики

Piston Force

Piston force arises from the hydrostatic pressure acting on the internal and ex­ternal shoulders of the casing string (Fig. 2.28). For a given casing size, the external piston forces acting on the casing collars cancel each other leaving only the internal piston forces. Assuming that the bottom section has a larger inter­nal diameter than the upper section, the piston force. Fap, on the casing can be

GRADE 1

GRADE 2

GRAOE 3

! Aup

Fig. 2.28: Diagrammatic presentation of the piston effect arising from a change in internal diameter.

expressed as:

(2.181)

Fap PD&as (-dupi AOU! j )

where:

Pdлл. = GP:D&a, — internal pressure at depth D±a.- psi.

D&as = depth of the change in cross-section, .4,. of the pipe. ft.

Aupi = internal area of the upper section of the pipe at depth D±a,- in.2

Aiowi = internal area of the lower section of the pipe at depth in.2

In this case the piston force is a compressive force.

EXAMPLE 2-13:

Consider the string of 9| in., N-80 casing subjected to the conditions in Table

2.6. Is it likely to buckle?

Solution:

The top of the cement, Djoc, >s at 9,100 ft. From the earlier discussion, an unstable equilibrium is given by Eq. 2.179:

<T( + <rT aa <

where:

Table 2.6: EXAMPLE 2-13: Lengths and downhole conditions for N-80 casing string.

Depth

Weight

ID

6’p.

Gpo

(ft)

(lb/ft)

(in.)

(sq. in.)

(psi/ft)

(psi/ft)

0 — 2,000

58.4

8.435

16.789

0.702

0.702

2,000 — 7,500

47

8.681

13.572

0.702

0.702

7,500 — 9,100

58.4

8.435

16.879

0.702

0.702

9,100 — 10,000

58.4

8.435

16.879

0.702

0.780 (cement)

_ (D — x)Tn — Aa(GPox + GPcm(D — x)) — AtGPiD + Fap ~ A,

Similarly:

<?t + <rT _ (Ajpi — A0pa)

2 “

Consider first the radial and tangential stresses along the length of casing. A0 = 72.760 sq. in.

Table 2.7: EXAMPLE 2-13: Radial and tangential stress calculations.

Depth

Weight

Ai

Pi

Po

Wt + стг)/2

(ft)

(lb/ft)

(sq. in.)

(psi)

(psi)

(psi)

2,000

58.4

55.88

1,404

1.404

-1,404

2,000

47

59.19

1.404

1,404

-1.404

7,500

47

59.19

5,265

5.265

-5,265

7,500

58.4

55.88

5,265

5,265

-5,265

9,100

58.4

55.88

6,388

6.388

-6,388

10,000

58.4

55.88

7,020

7.090

-7,322

Next, consider the axial stresses. First, the buoyancy force, Fbu, at the shoe is given by:

Fbu = 72.76 x 0.78 [(10,000 — 9,100)+ 0.702 x 9,100]

-55.88 x 0.702 x 105 = 123,605 lbf

For the remaining axial stresses it is more convenient to use a table (Table 2.8): Fa = Wn(D — x)

Fbu = A0{GVoDTOC + GPcm(D — Dtoc)) ~ A, GVtD Fap PD^Asi. AUpi Aiowl )

Depth

Weight

At

Fa

Fbu

Fap

(ft)

(lb/ft)

(sq. in.)

(lbf)

(lbf)

(lbf)

10,000

58.4

16.879

0

123.605

0

9,100

58.4

16.879

58.4(900)

123.605

0

7,500

58.4

16.879

58.4 (2.500)

123.605

0

7,500

47

13.572

58.4(900)

123.605

7,500 x

0.702

x (59.19 —

55.88)

2,000

47

13.572

58.4 (2,500)

123,605

7500 x

0.702

+ 47 (5.500)

x (59.19 —

— 5.88)

2,000

58.4

16.879

58.4 (2,500)

123,605

7,500 x

0.702

+ 47 (5.500)

x (59.19 —

55.88)

+ 2,000 x

0.702

(55.88 —

59.19)

0

58.4

16.879

58.4 ((2,500)

123,603

7.500 x

0.702

+ 2000

x (59.19-

55.88)

+ 47 (5,500)

+ 2.000 x

0.702

x (55.88 —

59.19)

One can combine all the available information into a final table (Table 2.9). Clearly at no time does the condition for instability, cra < (crt + яу)/2, occur in the above example. The neutral point is at the casing shoe.

Example 2-13 is a simplified example because temperature and pressure have been assumed constant.

Комментарии запрещены.