Солнечная электростанция 30кВт - бизнес под ключ за 27000$

15.08.2018 Солнце в сеть




Производство оборудования и технологии
Рубрики

Carbonaceous Solid Supported Acid Catalysts

Carbonaceous solid supported acid catalysts are sulfonated solid carbon forms, and this is a promising class of catalysts for the
hydrolysis of cellulose into glucose [72]. This type of materials were first derived from sulfonation of carbonized D-glucose or sucrose [86] and have been used in further studies in the trans-esterification of vegetable oils with alcohol for biofuels [86, 87]. The carbonaceous solid supported acid catalysts can be prepared by carbonizing car­bohydrates at 400°C under nitrogen atmosphere and then sulfonat — ing the amorphous carbon formed using fuming sulfuric acid at 150°C as shown in Figure 7.14 [2]. Another approach to these cata­lysts is the direct sulfonation of lignin, where under strongly acidic conditions lignin undergoes dehydration and further aromatization to produce sulfonated carbon. The catalysts consist of amorphous, polycyclic aromatic carbon sheets containing SO3H groups, COOH and OH groups as active sites as shown in Figure 7.14.

It has been suggested that these functionalized polycyclic car­bon sheets can absorb cellulose on the surface allowing the SO3H on the catalyst to access the glycosidic links in cellulose. The other functional groups like carboxylic acid (COOH) and phenolic OH

1

H2SO4

p-TsOH

on the catalyst surface are believed to be supporting the binding of the cellulose onto catalyst surface. High glucose yields of up to 75% with 80% selectivity have been reported for reaction car­ried out at 150°C for 24 h by Fukuhara et al. [88]. Furthermore, they suggested that the mechanism of cellulose hydrolysis with carbonaceous solid supported acid catalysts is similar to that for sulfuric acid. Namely, protons in SO3H attack the в-1,4 glycosidic bonds in the solid crystalline cellulose. The apparent activation energy (110 kJ/mol) for cellulose conversion into glucose with carbonaceous solid supported acid catalysts is lower than that for sulfuric acid (170 kJ/mol) under optimal conditions. This is attrib­uted to an increase in acidity of the SO3H groups on the carbon material with a decrease in the amount of water, as was previously demonstrated by Suganuma and coworkers [89]. Time courses of cellulose conversion in hydrolysis of pure crystalline cellulose and eucalyptus using carbon material and sulfuric acid are shown in Figure 7.15 [89]. Results for the hydrolysis of pure crystalline

■ 1

■H2SO4 ‘ p-TsOH

Figure 7.14 Synthesis of sulfonated amorphous carbon from glucose and lignin by different synthesis pathways.

CARBON MATERIAL

——————- I

Figure 7.15 Time courses of cellulose conversion in hydrolysis (catalyst, 0.300 g; cellulosic reactant, 0.025 g; water, 0.700 g; reaction temperature, 373 K) of pure crystalline cellulose and eucalyptus using carbon material (circles) and sulfuric acid (squares). Triangles represent the results for the hydrolysis of pure crystalline cellulose using niobic acid (Nb2O5-nH2O), H-mordenite, Nafion, and Amberlyst-15. (Reprinted with permission from reference [89]; copyright 2008 American Chemical Society).

cellulose using niobic acid (Nb2O5-nH2O), H-mordenite, Nation, and Amberlyst-15 are also shown in Figure 7.15. [89]

References

1. M. J. Taherzadeh and K. Karimi, Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources, 2007. 2(3): p. 472-499.

2. F. Guo, Z. Fang, C. C. Xu, and R. L. Smith Jr, Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 2012. 38(5): p. 672-690.

3. E. E. Harris, Wood saccharification. In Advances in Carbohydrate Chemistry, Vol 4, Academic Press, New York, , 1949: p. 153-188.

4. H. FJ. Wenzl, Chapter IV: The acid hydrolysis of wood. In The Chemical Technology of Wood, Academic Press, New York, , 1970: p. 157-252.

5. G. T. Tsao, M. R. Ladisch, M. Voloch, P. Bienkowski, Production of etha­nol and chemicals from cellulosic materials. 1982: p. 34-38.

6. J. D. Broder, J. W. Barrier, G. R. Lightsey, Proceedings of an Alternative Energy Conference, Conversion of cotton trash and other residues to liquid fuel. In Liquid Fuels from Renewable Resources, (Cundiff, J. S., ed). American Society of Agricultural Engineers, St. Joseph, MI, 1992: p. 189-200.

7. S. R. Nanguneri and R. D. Hester, Acid/sugar separation using ion exclusion resins. A process analysis and design. Separation Science and Technology, 1990. 25(13-15): p. 1829-1842.

8. M. A. Yancey and K. Kadam, Biomass to ethanol facility design, cost estimate, and financial evaluation. National Renewable Energy Laboratory, Golden, CO, 1997. Volume I.

9. W. A. Farone, J. E. Cuzens, Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. U. S. Patent No. 5,562,777. October 8, 1996.

10. W. A.C. Farone, J. E. Cuzens. Method of separating acids and sug­ars resulting from strong acid hydrolysis. U. S. Patent No. 5,580,389. December 3, 1996.

11. J. F. Saeman, J. L. Bubl, and E. E. Harris, Quantitative saccharification of wood and cellulose. Industrial and Engineering Chemistry, 1945. 17: p. 35-37.

12. V. T. Rovenskii, E. I. Sokol, G. I. Druzhinina, and L. V. Matvienko, Hydrolysis of cotton cellulose in concentrated solutions of sulphuric acid. Khim. Drev. (Riga), 1988(4): p. 29-33.

13. V. T. Rovenskii, E. I. Sokol, and T. G. Luts, Conversion of plant mate­rial polysaccharides in the presence of acid catalysts. I. Hydrolysis of cotton cellulose in concentrated acetic acid solutions of sulphuric acid. Khim. Drev. (Riga), 1988(4): p. 34-37.

14. F. Camacho, P. Gonzalez-Tello, E. Jurado, and A. Robles, Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. Journal of Chemical Technology and Biotechnology, 1996. 67(4): p. 350-356.

15. S. T. Moe, K. K. Janga, T. Hertzberg, M.-B. Hagg, K. 0yaas, and

N. Dyrset, Saccharification of lignocellulosic biomass for biofuel and biorefinery applications — A renaissance for the concentrated acid hydrolysis? Energy Procedia, 2012. 20(0): p. 50-58.

16. K. K. Janga, M. B. Hagg, and S. T. Moe, Influence of acid concentration, temperature, and time on decrystallization in two-stage concentrated sulfuric acid hydrolysis of pinewood and aspenwood: A statistical approach. BioResources, 2012. 7(1): p. 391-411.

17. Z.-Y. Sun, Y.-Q. Tang, T. Iwanaga, T. Sho, and K. Kida, Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresource Technology,

2011. 102(23): p. 10929-10935.

18. Z.-Y. Sun, Y.-Q. Tang, S. Morimura, and K. Kida, Reduction in environ­mental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol. Bioresource Technology, 2013. 128(0): p. 87-93.

19. Z.-S. Liu, X.-L. Wu, K. Kida, and Y.-Q. Tang, Corn stover sacchari­fication with concentrated sulfuric acid: Effects of saccharification conditions on sugar recovery and by-product generation. Bioresource Technology, 2012. 119(0): p. 224-233.

20. E. C. Sherrard and F. W. Kressman, Review of Processes in the United States Prior to World War II. Industrial & Engineering Chemistry, 1945. 37(1): p. 5-8.

21. W. L. Faith, Development of the Scholler Process in the United States. Industrial & Engineering Chemistry, 1945. 37(1): p. 9-11.

22. E. E. Harris and E. Beglinger, Madison wood sugar process. Industrial & Engineering Chemistry, 1946. 38(9): p. 890-895.

23. N. Gilbert, I. A. Hobbs, and J. D. Levine, HYDROLYSIS OF WOOD — Using Dilute Sulfuric Acid. Industrial & Engineering Chemistry, 1952. 44(7): p. 1712-1720.

24. S. B. Kim, D. M. Yum, and S. C. Park, Step-change variation of acid con­centration in a percolation reactor for hydrolysis of hardwood hemi — cellulose. Bioresource Technology, 2000. 72(3): p. 289-294.

25. B. J. Kim, Y. Y. Lee, and R. Torget, Modified percolation process in dilute-acid hydrolysis of biphasic hemicellulose. Applied Biochemistry and Biotechnology, 1994. 45-46(1): p. 113-129.

26. B. J. Kim, Y. Y. Lee, and R. Torget, An optimal temperature policy of percolation process as applied to dilute-acid hydrolysis of biphasic hemicellulose — Scientific note. Applied Biochemistry and Biotechnology, 1993. 39-40(1): p. 119-129.

27. R. Chen, W. Zhangwen, and Y. Y. Lee, Shrinking-bed model for perco­lation process applied to dilute-acid pretreatment/hydrolysis of cel — lulosic biomass. Applied Biochemistry and Biotechnology — Part A Enzyme Engineering and Biotechnology, 1998. 70-72: p. 37-49.

28. J. A. Church and D. Wooldridge, Continuous high-solids acid hydroly­sis of biomass in a 1 1/2-in. plug flow reactor. Industrial & Engineering Chemistry Product Research and Development, 1981. 20(2): p. 371-378.

29. D. R. Thompson and H. E. Grethlein, Design and evaluation of a plug flow reactor for acid hydrolysis of cellulose. Industrial & Engineering Chemistry Product Research and Development, 1979. 18(3): p. 166-169.

30. P. Bergeron, J. D. Wright, and P. J. Werdene, Progressing-batch hydroly­sis reactor single-stage experiments. 1986: p. 33-51.

31. R. W. Torget, J. S. Kim, and Y. Y. Lee, Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial and Engineering Chemistry Research, 2000. 39(8): p. 2817-2825.

32. Y. Kim, R. Hendrickson, N. Mosier, and M. R. Ladisch, Plug-flow reac­tor for continuous hydrolysis of glucans and xylans from pretreated corn fiber. Energy and Fuels, 2005. 19(5): p. 2189-2200.

33. N. Abatzoglou, P. G. Koeberle, E. Chornet, R. P. Overend, and E. G. Koukios, Dilute acid hydrolysis of lignocellulosics. An applica­tion to medium consistency suspensions of hardwoods using a plug flow reactor. Canadian Journal of Chemical Engineering, 1990. 68(4): p. 627-638.

34. J. J. McParland, H. E. Grethlein, and A. O. Converse, Kinetics of acid hydrolysis of corn stover. Solar Energy, 1982. 28(1): p. 55-63.

35. A. H. Brennan, W. Hoagland, and D. J. Schell, High Temperature acid hydrolysis of biomass using an engineering-scale plug flow reactor: Results of low solids testing. 1986: p. 53-70.

36. Y. Y. Lee, Z. Wu, and R. W. Torget, Modeling of countercurrent shrink — ing-bed reactor in dilute-acid total-hydrolysis of lignocellulosic bio­mass. Bioresource Technology, 2000. 71(1): p. 29-39.

37. A. O. Converse, Simulation of a cross-flow shrinking-bed reactor for the hydrolysis of lignocellulosics. Bioresource Technology, 2002. 81(2): p. 109-116.

38. J. S. Kim, S. I. Hong, and Y. Y. Lee, Bed-shrinking flow-through reactor in dilute acid hydrolysis of cane bagasse cellulose. Journal of Industrial and Engineering Chemistry, 2002. 8(5): p. 432-436.

39. J. S. Kim, Y. Y. Lee, and R. W. Torget, Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. Applied Biochemistry and Biotechnology — Part A Enzyme Engineering and Biotechnology, 2001. 91-93: p. 331-340.

40. A. S. Amarasekara and B. Wiredu, A comparison of dilute aqueous p-toluenesulfonic and sulfuric acid pretreatments and saccharification of corn stover at moderate temperatures and pressures. Bioresource Technology, 2012. 125(0): p. 114-118.

41. H. E. Van Dam, A. P.G. Kieboom, H. Van Bekkum, Starch-Starke, 1986. 38: p. 1995-.

42. M. J. Antal, W. S.L. Mok, G. N. Richards, Carbohydr Res, 1990. 199: p. 91.

43. B. F.M. Kuster, Starch-Starke, 1990. 42: p. 314.

44. M. A. Harmer, A. Fan, A. Liauw, and R. K. Kumar, A new route to high yield sugars from biomass: Phosphoric-sulfuric acid. Chemical Communications, 2009(43): p. 6610-6612.

45. P. Lenihan, A. Orozco, E. O’Neill, M. N.M. Ahmad, D. W. Rooney, and G. M. Walker, Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 2010. 156(2): p. 395-403.

46. G. Bustos, J. A. Ramirez, G. Garrote, and M. Vazquez, Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid. Applied Biochemistry and Biotechnology — Part A Enzyme Engineering and Biotechnology, 2003. 104(1): p. 51-68.

47. L. Kupiainen, J. Ahola, and J. Tanskanen, Comparison of formic and sulfuric acids as a glucose decomposition catalyst. Industrial and Engineering Chemistry Research, 2010. 49(18): p. 8444-8449.

48. N. S. Mosier, A. Sarikaya, C. M. Ladisch, and M. R. Ladisch, Characterization of Dicarboxylic Acids for Cellulose Hydrolysis. Biotechnology Progress, 2001. 17(3): p. 474-480.

49. T. Vom Stein, P. Grande, F. Sibilla, U. Commandeur, R. Fischer, W. Leitner, and P. Dominguez De Maria, Salt-assisted organic-acid- catalyzed depolymerization of cellulose. Green Chemistry, 2010. 12(10): p. 1844-1849.

50. A. S. Amarasekara and B. Wiredu, Aryl sulfonic acid catalyzed hydro­lysis of cellulose in water. Applied Catalysis A: General, 2012. 417-418: p. 259-262.

51. A. S. Amarasekara, O. S. Owereh, and B. Ezeh, Interactions of D-cellobiose with p-toluenesulfonic acid in aqueous solution: A 13C NMR study. Carbohydrate Research, 2011. 346(17): p. 2820-2822.

52. A. S. Amarasekara, Wiredu, B., Bronsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride catalyzed hydrolysis of D-cellobiose in aqueous medium. International Journal of Carbohydrate Chemistry, 2012. Volume 2012, Article ID 948652, : p. doi:10.1155/2012/948652.

53. A. S. Amarasekara, B. Wiredu, A comparison of the use of dilute aqueous p-toluenesulfonic acid and sulfuric acid in single step pre­treatment — saccharification of biomass. Proceedings of Energy and Materials Research Conference — EMR2012 (Torremolinos, Spain, 20-22 June 2012), In: Fuelling the Future: Advances in Science and Technologies for Energy Generation, Transmission and Storage. Ed.: A. Mendez-Vilas, BrownWalker, 2012 (Press, Boca Raton, Florida, USA, 2012. ISBN-13: 978-1-61233-558-2).

54. R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 2002. 124(18): p. 4974-4975.

55. P. Maki-Arvela, I. Anugwom, P. Virtanen, R. Sjoholm, and J. P. Mikkola, Dissolution of lignocellulosic materials and its constituents using ionic liquids — A review. Industrial Crops and Products, 2010. 32(3): p. 175-201.

56. T. Vancov, A.-S. Alston, T. Brown, and S. McIntosh, Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy,

2012. 45(0): p. 1-6.

57. R. D. Rogers and G. A. Voth, Ionic Liquids. Accounts of Chemical Research, 2007. 40(11): p. 1077-1078.

58. H. Zhang, J. Wu, J. Zhang, and J. He, 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules, 2005. 38(20): p. 8272-8277.

59. C. Li and Z. K. Zhao, Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Advanced Synthesis and Catalysis, 2007. 349(11-12): p. 1847-1850.

60. C. Li, Q. Wang, and Z. K. Zhao, Acid in ionic liquid: An efficient sys­tem for hydrolysis of lignocellulose. Green Chemistry, 2008. 10(2): p. 177-182.

61. S. J. Dee and A. T. Bell, A study of the acid-catalyzed hydrolysis of cel­lulose dissolved in ionic liquids and the factors influencing the dehy­dration of glucose and the formation of humins. ChemSusChem, 2011. 4(8): p. 1166-1173.

62. Z. Zhang and Z. K. Zhao, Solid acid and microwave-assisted hydro­lysis of cellulose in ionic liquid. Carbohydrate Research, 2009. 344(15): p. 2069-2072.

63. R. Rinaldi, N. Meine, J. vom Stein, R. Palkovits, and F. Schuth, Which controls the depolymerization of cellulose in ionic liquids: The solid acid catalyst or cellulose? ChemSusChem, 2010. 3(2): p. 266-276.

64. R. Rinaldi, R. Palkovits, and F. Schuth, Depolymerization of cellulose using solid catalysts in ionic liquids. Angewandte Chemie — International Edition, 2008. 47(42): p. 8047-8050.

65. X. Qi, M. Watanabe, T. M. Aida, and R. L. Smith Jr, Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two — step process. Cellulose, 2011. 18(5): p. 1327-1333.

66. A. S. Amarasekara and O. S. Owereh, Synthesis of a sulfonic acid func­tionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catalysis Communications, 2010. 11(13): p. 1072-1075.

67. A. S. Amarasekara and O. S. Owereh, Hydrolysis and decomposi­tion of cellulose in Bransted acidic ionic liquids under mild condi­tions. Industrial and Engineering Chemistry Research, 2009. 48(22): p. 10152-10155.

68. Y. Liu, W. Xiao, S. Xia, and P. Ma, SO3H-functionalized acidic ionic liq­uids as catalysts for the hydrolysis of cellulose. Carbohydrate Polymers,

2013. 92(1): p. 218-222.

69. A. S. Amarasekara and B. Wiredu, Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-propylsulfonic)-3-me — thylimidazolium chloride, and p-toluenesulfonic acid at moderate temperatures and pressures. Industrial and Engineering Chemistry Research, 2011. 50(21): p. 12276-12280.

70. K. D.O. Vigier and F. Jerome, Heterogeneously-catalyzed conversion of carbohydrates, 2010. p. 63-92.

71. K.-i. Shimizu and A. Satsuma, Toward a rational control of solid acid catalysis for green synthesis and biomass conversion. Energy and Environmental Science, 2011. 4(9): p. 3140-3153.

72. A. Onda, T. Ochi, and K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 2008. 10(10): p. 1033-1037.

73. Z. Fang, F. Zhang, H. Y. Zeng, and F. Guo, Production of glucose by hydrolysis of cellulose at 423K in the presence of activated hydrotalcite nanoparticles. Bioresource Technology, 2011. 102(17): p. 8017-8021.

74. A. Takagaki, C. Tagusagawa, and K. Domen, Glucose production from saccharides using layered transition metal oxide and exfoli­ated nanosheets as a water-tolerant solid acid catalyst. Chemical Communications, 2008(42): p. 5363-5365.

75. D. M. Lai, L. Deng, J. Li, B. Liao, Q. X. Guo, and Y. Fu, Hydrolysis of cel­lulose into glucose by magnetic solid acid. ChemSusChem, 2011. 4(1): p. 55-58.

76. J. Pang, A. Wang, M. Zheng, and T. Zhang, Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications, 2010. 46(37): p. 6935-6937.

77. D. M. Lai, L. Deng, Q. X. Guo, and Y. Fu, Hydrolysis of biomass by magnetic solid acid. Energy and Environmental Science, 2011. 4(9): p. 3552-3557.

78. G. Akiyama, R. Matsuda, H. Sato, M. Takata, and S. Kitagawa, Cellulose hydrolysis by a new porous coordination polymer deco­rated with sulfonic acid functional groups. Advanced Materials, 2011. 23(29): p. 3294-3297.

79. H. Kobayashi, T. Komanoya, K. Hara, and A. Fukuoka, Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem, 2010. 3(4): p. 440-443.

80. J. Tian, J. Wang, S. Zhao, C. Jiang, X. Zhang, and X. Wang, Hydrolysis of cellulose by the heteropoly acid H 3PW 12O 40. Cellulose, 2010. 17(3): p. 587-594.

81. M. Cheng, T. Shi, H. Guan, S. Wang, X. Wang, and Z. Jiang, Clean pro­duction of glucose from polysaccharides using a micellar heteropoly­acid as a heterogeneous catalyst. Applied Catalysis B: Environmental, 2011. 107(1-2): p. 104-109.

82. H. K. Hartler N, Heterogeneous hydrolysis of cellulose with high poly­mer acids. Part 3. The acid hydrolysis of cellulose with finely divided cation-exchange resin in the hydrogen form. J Polym Sci, 1962. 56: p. 425-434.

83. Z. Yang, L. Niu, Z. Ma, H. Ma, and Z. Lei, Fabrication of highly active Sn/W mixed transition-metal oxides as solid acid catalysts. Transition Metal Chemistry, 2011. 36(3): p. 269-274.

84. P. Delaney, C. McManamon, J. P. Hanrahan, M. P. Copley, J. D. Holmes, and M. A. Morris, Development of chemically engineered porous metal oxides for phosphate removal. Journal of Hazardous Materials, 2011. 185(1): p. 382-391.

85. A. Fukuoka and P. L. Dhepe, Catalytic conversion of cellulose into sugar alcohols. Angewandte Chemie — International Edition, 2006. 45(31): p. 5161-5163.

86. M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen, and M. Hara, Green chemistry: Biodiesel made with sugar catalyst. Nature, 2005. 438(7065): p. 178.

87. Q. Shu, Z. Nawaz, J. Gao, Y. Liao, Q. Zhang, D. Wang, and J. Wang, Synthesis of biodiesel from a model waste oil feedstock using a car­bon-based solid acid catalyst: Reaction and separation. Bioresource Technology, 2010. 101(14): p. 5374-5384.

88. K. Fukuhara, K. Nakajima, M. Kitano, H. Kato, S. Hayashi, and M. Hara, Structure and catalysis of cellulose-derived amorphous car­bon bearing SO 3H groups. ChemSusChem, 2011. 4(6): p. 778-784.

89. S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, and M. Hara, Hydrolysis of cellulose by amorphous car­bon bearing SO 3H, COOH, and OH groups. Journal of the American Chemical Society, 2008. 130(38): p. 12787-12793.

Комментарии запрещены.