Солнечная электростанция 30кВт - бизнес под ключ за 27000$

15.08.2018 Солнце в сеть




Производство оборудования и технологии
Рубрики

Municipal Waste Feedstock Utilizing Cellulosic Ethanol Plants

Even though there are a relatively smaller number of research pub­lications on utilization of municipal solid wastes for cellulosic etha­nol production in comparison to other feedstocks, there are more than a dozen MSW-cellulosic ethanol plants in operation or under construction around the world. According to their website, in November 2012 Fulcrum BioEnergy, Inc. announced that it had suc­cessfully secured commitments and was proceeding toward closing financings for $175 million to fund construction of its first munici­pal solid waste to low-carbon fuels plant, the Sierra BioFuels Plant ("Sierra"), and to fund the development of future projects [256]. Fulcrum’s engineering and technology teams have recently made numerous enhancements to the design of the Sierra plant and to its proprietary gasification-syngas fermentation technology. The com­pany expects these improvements will dramatically reduce its cost to produce renewable fuel to less than $0.75 per gallon at Sierra, down from approximately $1.25 per gallon as previously disclosed. The cost of production at future Fulcrum plants is now expected to be less than $0.50 per gallon, down from $0.70 per gallon as previ­ously disclosed [256].

In addition to this, there are several operational and under­construction municipal waste-cellulosic ethanol plants in North America, some of which are:

1. EnerKem, Westbury, Quebec, Canada; demonstration facility; began operations in 2009; 1.3 MG/year.

2. EnerKem, Edmonton, Alberta, Canada; commercial facility; Phase 1 completion in 2013; 10 MG/year.

3. Fiberight, Lawrenceville, Virginia, USA; commercial facility; Phase 1 completion in 2013; 1 MG/year.

4. Fiberight, Blairstown, Iowa, USA; commercial facility; existing facility to be modified in 2013; 6 MG/year.

References

1. S. Kim and B. E. Dale, Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 2004. 26(4): p. 361-375.

2. L. O. Pordesimo, B. R. Hames, S. Sokhansanj, and W. C. Edens, Variation in corn stover composition and energy content with crop maturity. Biomass and Bioenergy, 2005. 28(4): p. 366-374.

3. N. D. Weiss, J. D. Farmer, and D. J. Schell, Impact of corn stover com­position on hemicellulose conversion during dilute acid pretreat­ment and enzymatic cellulose digestibility of the pretreated solids. Bioresource Technology, 2010. 101(2): p. 674-678.

4. M. P. Garcfa-Aparicio, J. M. Oliva, P. Manzanares, M. Ballesteros, I. Ballesteros, A. Gonzalez, and M. J. Negro, Second-generation etha­nol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel, 2011. 90(4): p. 1624-1630.

5. Z. Li, Y. Liu, W. Liao, S. Chen, and R. S. Zemetra, Bioethanol produc­tion using genetically modified and mutant wheat and barley straws. Biomass and Bioenergy, 2011. 35(1): p. 542-548.

6. C. Pronyk and G. Mazza, Fractionation of Triticale, Wheat, Barley, Oats, Canola, and Mustard Straws for the Production of Carbohydrates and Lignins. Bioresource Technology, (0).

7. J.-y. Park, E. Kanda, A. Fukushima, K. Motobayashi, K. Nagata, M. Kondo, Y. Ohshita, S. Morita, and K. Tokuyasu, Contents of vari­ous sources of glucose and fructose in rice straw, a potential feedstock

for ethanol production in Japan. Biomass and Bioenergy, 2011. 35(8): p. 3733-3735.

8. W.-H. Chen, Y.-Y. Xu, W.-S. Hwang, and J.-B. Wang, Pretreatment of rice straw using an extrusion/extraction process at bench-scale for producing cellulosic ethanol. Bioresource Technology, 2011. 102(22): p. 10451-10458.

9. S. Jin and H. Chen, Near-infrared analysis of the chemical composi­tion of rice straw. Industrial Crops and Products, 2007. 26(2): p. 207-211.

10. C. J. Lomborg, M. H. Thomsen, E. S. Jensen, and K. H. Esbensen, Power plant intake quantification of wheat straw composition for 2nd gener­ation bioethanol optimization — A Near Infrared Spectroscopy (NIRS) feasibility study. Bioresource Technology, 2010. 101(4): p. 1199-1205.

11. DOE, Biomass feedstock composition and property database. Department of Energy, Biomass Program. http://www. eere. energy. gov/biomass/progs/search1.cgi, 2006.

12. B. S. Gupta, D. E. Johnson, F. C. Hinds, and H. C. Minor, Forage poten­tial of soybean straw. Agronomy J 1970. 65: p. 538-541.

13. C. A. Cardona, J. A. Quintero, and I. C. Paz, Production of bioetha­nol from sugarcane bagasse: Status and perspectives. Bioresource Technology, 2010. 101(13): p. 4754-4766.

14. T. F. McAloon A, Yee W, Ibsen K, Wooley R, Determining the cost ofproducing ethanol from corn starch and lignocellulosic feedstocks. Colorado: National Renewable Energy Laborato. NREL/TP-580- 28893, 2000.

15. USDOE, Theoretical ethanol yield calculator. US Department of Energy. Available at. http://www. ott. doe. gov/biofuels/ethanol cal — culator. html., 2010.

16. H.-J. Huang, S. Ramaswamy, W. Al-Dajani, U. Tschirner, and

R. A. Cairncross, Effect of biomass species and plant size on cellulosic ethanol: A comparative process and economic analysis. Biomass and Bioenergy, 2009. 33(2): p. 234-246.

17. R. M. Aden A, Ibsen K, Jechura J, Neeves K, Sheehan J, Lignocellulosic biomass to ethanol process design and economics utilizing co-cur­rent dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory report no. NREL/TP — 510-32438, 2002.

18. M. Chen, J. Zhao, and L. Xia, Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass and Bioenergy, 2009. 33(10): p. 1381-1385.

19. J. Shen and C. E. Wyman, A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover. Bioresource Technology, 2011. 102(19): p. 9111-9120.

20. T. A. Lloyd and C. E. Wyman, Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology, 2005. 96(18): p. 1967-1977.

21. A. Esteghlalian, A. G. Hashimoto, J. J. Fenske, and M. H. Penner, Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology. 59(2-3): p. 129-136.

22. L. Yan, H. Zhang, J. Chen, Z. Lin, Q. Jin, H. Jia, and H. Huang, Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresource Technology, 2009. 100(5): p. 1803-1808.

23. T. H. Kim and Y. Y. Lee, Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technology, 2005. 96(18): p. 2007-2013.

24. M. W. Lau and B. E. Dale, Effect of primary degradation-reaction products from Ammonia Fiber Expansion (AFEX)-treated corn stover on the growth and fermentation of Escherichia coli KO11. Bioresource Technology, 2010. 101(20): p. 7849-7855.

25. X. Li and T. H. Kim, Low-liquid pretreatment of corn stover with aqueous ammonia. Bioresource Technology, 2011. 102(7): p. 4779-4786.

26. C. G. Yoo, N. P. Nghiem, K. B. Hicks, and T. H. Kim, Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) pro­cess. Bioresource Technology, 2011. 102(21): p. 10028-10034.

27. X. Li, T. H. Kim, and N. P. Nghiem, Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresource Technology, 2010. 101(15): p. 5910-5916.

28. S. Kumar, U. Kothari, L. Kong, Y. Y. Lee, and R. B. Gupta, Hydrothermal pretreatment of switchgrass and corn stover for production of etha­nol and carbon microspheres. Biomass and Bioenergy, 2011. 35(2): p. 956-968.

29. J. Xu, M. H. Thomsen, and A. B. Thomsen, Ethanol production from hydrothermal pretreated corn stover with a loop reactor. Biomass and Bioenergy, 2010. 34(3): p. 334-339.

30. J. Shi, Y. Pu, B. Yang, A. Ragauskas, and C. E. Wyman, Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresource Technology, 2011. 102(10): p. 5952-5961.

31. K. Ohgren, A. Rudolf, M. Galbe, and G. Zacchi, Fuel ethanol produc­tion from steam-pretreated corn stover using SSF at higher dry mat­ter content. Biomass and Bioenergy, 2006. 30(10): p. 863-869.

32. Y. Li, K. Gao, S. Tian, S. Zhang, and X. Yang, Evaluation of Saccharomyces cerevisiae Y5 for ethanol production from enzymatic hydrolysate of non-detoxified steam-exploded corn stover. Bioresource Technology, 2011. 102(22): p. 10548-10552.

33. L. Wang and H. Chen, Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochemistry, 2011. 46(2): p. 604-607.

34. J. Chang, W. Cheng, Q. Yin, R. Zuo, A. Song, Q. Zheng, P. Wang, X. Wang, and J. Liu, Effect of steam explosion and microbial fermenta­tion on cellulose and lignin degradation of corn stover. Bioresource Technology, (0).

35. W. E. Kaar and M. T. Holtzapple, Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 2000. 18(3): p. 189-199.

36. S. Kim and M. T. Holtzapple, Lime pretreatment and enzymatic hydro­lysis of corn stover. Bioresource Technology, 2005. 96(18): p. 1994-2006.

37. J. P. O’Dwyer, L. Zhu, C. B. Granda, and M. T. Holtzapple, Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: Inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model. Bioresource Technology, 2007. 98(16): p. 2969-2977.

38. C. Wan and Y. Li, Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology, 2010. 101(16): p. 6398-6403.

39. C. Wan and Y. Li, Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme and Microbial Technology, 2010. 47(1-2): p. 31-36.

40. N. Narayanaswamy, A. Faik, D. J. Goetz, and T. Gu, Supercritical car­bon dioxide pretreatment of corn stover and switchgrass for ligno — cellulosic ethanol production. Bioresource Technology, 2011. 102(13): p. 6995-7000.

41. J. Xu, M. H. Thomsen, and A. B. Thomsen, Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid. Journal of Biotechnology, 2009. 139(4): p. 300-305.

42. J. Zhao, H. Zhang, R. Zheng, Z. Lin, and H. Huang, The enhancement of pretreatment and enzymatic hydrolysis of corn stover by FeSO4 pretreatment. Biochemical Engineering Journal, 2011. 56(3): p. 158-164.

43. K. Ohgren, R. Bura, G. Lesnicki, J. Saddler, and G. Zacchi, A com­parison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochemistry, 2007. 42(5): p. 834-839.

44. F. K. Kazi, J. A. Fortman, R. P. Anex, D. D. Hsu, A. Aden, A. Dutta, and G. Kothandaraman, Techno-economic comparison of process tech­nologies for biochemical ethanol production from corn stover. Fuel, 2010. 89, Supplement 1(0): p. S20-S28.

45. FAOSTAT. http://faostat3.fao. org/home/index. html. 2013.

46. J. D. Kerstetter, J. K. Lyons, Wheat straw for ethanol production in Washington: A resource, technical, and economic assessment. Washington State University Cooperative Extension. <http://www. energy. wsu. edu/documents/renewables/WheatstrawForEthanol. pdf>. 2001.

47. G. Wang, C. Chen, J. Li, B. Zhou, M. Xie, S. Hu, K. Kawamura, and Y. Chen, Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning. Atmospheric Environment, 2011. 45(15): p. 2473-2479.

48. A. M.J. Kootstra, H. H. Beeftink, E. L. Scott, and J. P.M. Sanders, Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal, 2009. 46(2): p. 126-131.

49. B. C. Saha, L. B. Iten, M. A. Cotta, and Y. V. Wu, Dilute acid pretreat­ment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry, 2005. 40(12): p. 3693-3700.

50. B. Qi, X. Chen, and Y. Wan, Pretreatment of wheat straw by non­ionic surfactant-assisted dilute acid for enhancing enzymatic hydro­lysis and ethanol production. Bioresource Technology, 2010. 101(13): p. 4875-4883.

51. N. Curreli, M. B. Fadda, A. Rescigno, A. C. Rinaldi, G. Soddu, F. Sollai,

S. Vaccargiu, E. Sanjust, and A. Rinaldi, Mild alkaline/oxidative pre­treatment of wheat straw. Process Biochemistry, 1997. 32(8): p. 665-670.

52. S. McIntosh and T. Vancov, Optimisation of dilute alkaline pretreat­ment for enzymatic saccharification of wheat straw. Biomass and Bioenergy, 2011. 35(7): p. 3094-3103.

53. N. Qureshi, B. C. Saha, R. E. Hector, and M. A. Cotta, Removal of fer­mentation inhibitors from alkaline peroxide pretreated and enzy­matically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass and Bioenergy, 2008. 32(12): p. 1353-1358.

54. H. Chen, Y. Han, and J. Xu, Simultaneous saccharification and fer­mentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry, 2008. 43(12): p. 1462-1466.

55. G. Han, J. Deng, S. Zhang, P. Bicho, and Q. Wu, Effect of steam explo­sion treatment on characteristics of wheat straw. Industrial Crops and Products, 2010. 31(1): p. 28-33.

56. S. Zabihi, R. Alinia, F. Esmaeilzadeh, and J. F. Kalajahi, Pretreatment of wheat straw using steam, steam/acetic acid and steam/etha — nol and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 2010. 105(3): p. 288-297.

57. G. Radeva, I. Valchev, S. Petrin, E. Valcheva, and P. Tsekova, Kinetic model of enzymatic hydrolysis of steam-exploded wheat straw. Carbohydrate Polymers, 2012. 87(2): p. 1280-1285.

58. J. A. Perez, I. Ballesteros, M. Ballesteros, F. Saez, M. J. Negro, and P. Manzanares, Optimizing Liquid Hot Water pretreatment condi­tions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel, 2008. 87(17-18): p. 3640-3647.

59. A. S. Schmidt and A. B. Thomsen, Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technology, 1998. 64(2): p. 139-151.

60. B. K. Ahring, D. Licht, A. S. Schmidt, P. Sommer, and A. B. Thomsen, Production of ethanol from wet oxidised wheat straw by Thermoanaerobacter mathranii. Bioresource Technology, 1999. 68(1): p. 3-9.

61. C. Yang, Z. Shen, G. Yu, and J. Wang, Effect and aftereffect of у radia­tion pretreatment on enzymatic hydrolysis of wheat straw. Bioresource Technology, 2008. 99(14): p. 6240-6245.

62. M. T. Garcia-Cubero, G. Gonzalez-Benito, I. Indacoechea, M. Coca, and S. Bolado, Effect of ozonolysis pretreatment on enzymatic digest­ibility of wheat and rye straw. Bioresource Technology, 2009. 100(4): p. 1608-1613.

63. F. Sun and H. Chen, Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresource Technology, 2008. 99(14): p. 6156-6161.

64. R. Alinia, S. Zabihi, F. Esmaeilzadeh, and J. F. Kalajahi, Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosystems Engineering, 2010. 107(1): p. 61-66.

65. D. Fu and G. Mazza, Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid. Bioresource Technology, 2011. 102(17): p. 8003-8010.

66. Q. Li, Y.-C. He, M. Xian, G. Jun, X. Xu, J.-M. Yang, and L.-Z. Li, Improving enzymatic hydrolysis of wheat straw using ionic liq­uid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 2009. 100(14): p. 3570-3575.

67. F. Talebnia, D. Karakashev, and I. Angelidaki, Production of bioetha­nol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology, 2010. 101(13): p. 4744-4753.

68. M. Linde, E. L. Jakobsson, M. Galbe, and G. Zacchi, Steam pretreat­ment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass and Bioenergy, 2008. 32(4): p. 326-332.

69. B. C. Saha and M. A. Cotta, Ethanol production from alkaline perox­ide pretreated enzymatically saccharified wheat straw. Biotechnology Progress, 2006. 22(2): p. 449-453.

70. M. Pedersen and A. S. Meyer, Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydroly­sis of wheat straw. Biotechnology Progress, 2009. 25(2): p. 399-408.

71. B. L. Maiorella, Ethanol. In: Moo-Young, M. (Ed.), Comprehensive Biotechnology. Pergamon Press, Oxford, 1985: p. 861-914.

72. S. I. Mussatto and I. C. Roberto, Optimal Experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production. Biotechnology Progress, 2004. 20(1): p. 134-139.

73. L. L. Baxter, Miles, T. R., Miles, T. R. Jr., Jenkins, B. M., Dayton, D. C., Milne, T. A., Bryers, and O. R. W., L. L., The behavior of inorganic material in biomass-fired power boilers—field and laboratory expe­riences: Volume II of alkali deposits found in biomass power plants. National Renewable Energy Laboratory, Golden, CO. Report: NREL/ TP-433-8142., 1996.

74. K. Kadam, F. Forrest, and J. Jacobson, Rice straw as a lignocellulosic resource: Collection, processing, transportation, and environmental aspects. Biomass and Bioenergy, 2000. 18(5): p. 369-389.

75. S. F. Lee, Forsberg C. W, Gibbins L. N, Cellulolytic activity of Clostridium acetobutylicum. Appl Environ Microbiol, 1985. 50.

76. A. Ranjan and V. S. Moholkar, Comparative study of various pretreat­ment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel, (0).

77. W.-H. Chen, B.-L. Pen, C.-T. Yu, and W.-S. Hwang, Pretreatment effi­ciency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol produc­tion. Bioresource Technology, 2011. 102(3): p. 2916-2924.

78. T.-C. Hsu, G.-L. Guo, W.-H. Chen, and W.-S. Hwang, Effect of dilute acid pretreatment of rice straw on structural properties and enzy­matic hydrolysis. Bioresource Technology, 2010. 101(13): p. 4907-4913.

79. J. K. Ko, J. S. Bak, M. W. Jung, H. J. Lee, I.-G. Choi, T. H. Kim, and

K. H. Kim, Ethanol production from rice straw using optimized aque­ous-ammonia soaking pretreatment and simultaneous saccharifica­tion and fermentation processes. Bioresource Technology, 2009. 100(19): p. 4374-4380.

80. R. Shiroma, J.-y. Park, M. I. Al-Haq, M. Arakane, M. Ike, and K. Tokuyasu, RT-CaCCO process: An improved CaCCO process for rice straw by its incorporation with a step of lime pretreatment at room temperature. Bioresource Technology, 2011. 102(3): p. 2943-2949.

81. J.-y. Park, R. Shiroma, M. I. Al-Haq, Y. Zhang, M. Ike, Y. Arai-Sanoh, A. Ida, M. Kondo, and K. Tokuyasu, A novel lime pretreatment for subsequent bioethanol production from rice straw — Calcium captur­ing by carbonation (CaCCO) process. Bioresource Technology, 2010. 101(17): p. 6805-6811.

82. S. Zhu, Y. Wu, Z. Yu, J. Liao, and Y. Zhang, Pretreatment by micro — wave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 2005. 40(9): p. 3082-3086.

83. H. Ma, W.-W. Liu, X. Chen, Y.-J. Wu, and Z.-L. Yu, Enhanced enzy­matic saccharification of rice straw by microwave pretreatment. Bioresource Technology, 2009. 100(3): p. 1279-1284.

84. M. Taniguchi, D. Takahashi, D. Watanabe, K. Sakai, K. Hoshino,

T. Kouya, and T. Tanaka, Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 2010. 110(4): p. 449-452.

85. A. Hideno, H. Inoue, K. Tsukahara, S. Fujimoto, T. Minowa, S. Inoue, T. Endo, and S. Sawayama, Wet disk milling pretreatment with­out sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 2009. 100(10): p. 2706-2711.

86. K. Murakami, K. Kasai, T. Kato, and K. Sugawara, Conversion of rice straw into valuable products by hydrothermal treatment and steam gasification. Fuel, (0).

87. R. C. Sun, J. Tomkinson, P. L. Ma, and S. F. Liang, Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohydrate Polymers, 2000. 42(2): p. 111-122.

88. T.-A. D. Nguyen, K.-R. Kim, S. J. Han, H. Y. Cho, J. W. Kim, S. M. Park, J. C. Park, and S. J. Sim, Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresource Technology, 2010. 101(19): p. 7432-7438.

89. J.-W. Kim, K. S. Kim, J.-S. Lee, S. M. Park, H.-Y. Cho, J. C. Park, and J. S. Kim, Two-stage pretreatment of rice straw using aqueous ammo­nia and dilute acid. Bioresource Technology, 2011. 102(19): p. 8992-8999.

90. M. Gao, F. Xu, S. Li, X. Ji, S. Chen, and D. Zhang, Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosystems Engineering, 2010. 106(4): p. 470-475.

91. D. Salvachua, A. Prieto, M. Lopez-Abelairas, T. Lu-Chau, A. T. Martinez, and M. J. Martinez, Fungal pretreatment: An alter­native in second-generation ethanol from wheat straw. Bioresource Technology, 2011. 102(16): p. 7500-7506.

92. P. Binod, R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey, Bioethanol production from rice straw: An overview. Bioresource Technology, 2010. 101(13): p. 4767-4774.

93. A. Pandey, C. R. Soccol, P. Nigam, and V. T. Soccol, Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresource Technology, 2000. 74(1): p. 69-80.

94. Z. Qiu, G. M. Aita, and M. S. Walker, Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresource Technology, 2012. 117: p. 251-256.

95. B. P. Lavarack, G. J. Griffin, and D. Rodman, The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glu­cose and other products. Biomass and Bioenergy, 2002. 23(5): p. 367-380.

96. A. Rodrtguez-Chong, J. A. Ramirez, G. Garrote, and M. Vazquez, Hydrolysis of sugar cane bagasse using nitric acid: A kinetic assess­ment. Journal of Food Engineering, 2004. 61(2): p. 143-152.

97. S. Gamez, J. J. Gonzalez-Cabriales, J. A. Ramirez, G. Garrote, and M. Vazquez, Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 2006. 74(1): p. 78-88.

98. H. Tan, R. Yang, W. Sun, and S. Wang, Peroxide-acetic acid pre­treatment to remove bagasse lignin prior to enzymatic hydrolysis. Industrial and Engineering Chemistry Research, 2010. 49(4): p. 1473-1479.

99. C. Aiello, A. Ferrer, and A. Ledesma, Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresource Technology, 1996. 57(1): p. 13-18.

100. G. J.M. Rocha, A. R. Gongalves, B. R. Oliveira, E. G. Olivares, and C. E.V. Rossell, Steam explosion pretreatment reproduction and alka­line delignification reactions performed on a pilot scale with sugar­cane bagasse for bioethanol production. Industrial Crops and Products, 2012. 35(1): p. 274-279.

101. R. Velmurugan and K. Muthukumar, Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresource Technology, 2011. 102(14): p. 7119-7123.

102. M. O.S. Dias, A. V. Ensinas, S. A. Nebra, R. Maciel Filho, C. E.V. Rossell, and M. R.W. Maciel, Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bio­ethanol production process. Chemical Engineering Research and Design,

2009. 87(9): p. 1206-1216.

103. C. E. Vaz Rossell, D. Lahr Filho, A. G.P. Hilst, and M. R.L. V. Leal, Saccharification of sugarcane bagasse for ethanol production using the Organosolv process. International Sugar Journal, 2005. 107(1275): p. 192-195.

104. R. Aguilar, J. A. Ramirez, G. Garrote, and M. Vazquez, Kinetic study of the acid hydrolysis of sugar cane bagasse. Journal of Food Engineering, 2002. 55(4): p. 309-318.

105. X. Pan, C. Arato, N. Gilkes, D. Gregg, W. Mabee, K. Pye, Z. Xiao, X. Zhang, and J. Saddler, Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 2005. 90(4): p. 473-481.

106. C. Pronyk and G. Mazza, Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins. Bioresource Technology, 2012. 106: p. 117-124.

107. S. B. Kim, J. H. Lee, S. J. Lee, E. J. Jang, K. K. Oh, and S. W. Kim, Dilute acid pretreatment of barley straw and its saccharification and fer­mentation. Journal of Biotechnology, 2010. 150, Supplement(0): p. 141.

108. I. A. Panagiotopoulos, R. R. Bakker, T. de Vrije, and E. G. Koukios, Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresource Technology, 2011. 102(24): p. 11204-11211.

109. M. Linde, M. Galbe, and G. Zacchi, Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme load­ings and low yeast concentration. Enzyme and Microbial Technology, 2007. 40(5): p. 1100-1107.

110. P. Adapa, L. Tabil, and G. Schoenau, Grinding performance and phys­ical properties of non-treated and steam exploded barley, canola, oat and wheat straw. Biomass and Bioenergy, 2011. 35(1): p. 549-561.

111. B. C. Saha and M. A. Cotta, Comparison of pretreatment strategies for enzymatic saccharification and fermentation of barley straw to etha­nol. New Biotechnology, 2010. 27(1): p. 10-16.

112. S. Andrade de Sa, C. Palmer, and S. Engel, Ethanol Production, Food and Forests. Environmental and Resource Economics, 2012. 51(1): p. 1-21.

113. M. Kocoloski, W. Michael Griffin, and H. Scott Matthews, Estimating national costs, benefits, and potential for cellulosic ethanol production from forest thinnings. Biomass and Bioenergy, 2011. 35(5): p. 2133-2142.

114. G. Hu, J. A. Heitmann, and O. J. Rojas, Feedstock pretreatment strat­egies for producing ethanol from wood, bark, and forest residues. BioResources, 2008. 3(1): p. 270-294.

115. J. McKechnie, S. Colombo, J. Chen, W. Mabee, and H. L. MacLean, Forest bioenergy or forest carbon? Assessing trade-offs in green­house gas mitigation with wood-based fuels. Environmental Science and Technology, 2011. 45(2): p. 789-795.

116. S. Ferreira, N. Gil, J. A. Queiroz, A. P. Duarte, and F. C. Domingues, Bioethanol from the Portuguese forest residue Pterospartum triden — tatum — An evaluation of pretreatment strategy for enzymatic sac­charification and sugars fermentation. Bioresource Technology, 2010. 101(20): p. 7797-7803.

117. C. Zhang, J. Y. Zhu, R. Gleisner, and J. Sessions, Fractionation of Forest Residues of Douglas-fir for Fermentable Sugar Production by SPORL Pretreatment. Bioenergy Research, 2012. 5(4): p. 978-988.

118. R. Pezoa, V. Cortinez, S. Hyvarinen, M. Reunanen, J. Hemming, M. E. Lienqueo, O. Salazar, R. Carmona, A. Garcia, D. Y. Murzin, and J. P. Mikkola, Use of ionic liquids in the pretreatment of forest and agricultural residues for the production of bioethanol. Cellulose Chemistry and Technology, 2010. 44(4-6): p. 165-172.

119. D. Biello, Grass makes better ethanol than corn does, in Scientific American, January 8, 2008.

120. M. R. Schmer, K. P. Vogel, R. B. Mitchell, and R. K. Perrin, Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(2): p. 464-469.

121. S. B. McLaughlin and L. Adams Kszos, Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy, 2005. 28(6): p. 515-535.

122. S. Kim and B. E. Dale, Cumulative energy and global warming impact from the production of biomass for biobased products. Journal of Industrial Ecology, 2004. 7(3-4): p. 147-162.

123. R. Samson, S. Mani, R. Boddey, S. Sokhansanj, D. Quesada, S. Urquiaga, V. Reis, and C. H. Lem, The potential of C4 perennial grasses for developing a global BIOHEAT Industry. Critical Reviews in Plant Sciences, 2005. 24(5-6): p. 461-495.

124. J. R. Jensen, J. E. Morinelly, K. R. Gossen, M. J. Brodeur-Campbell, and D. R. Shonnard, Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresource Technology, 2010. 101(7): p. 2317-2325.

125. A. Esteghlalian, A. G. Hashimoto, J. J. Fenske, and M. H. Penner, Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology, 1997. 59(2-3): p. 129-136.

126. M. Foston and A. J. Ragauskas, Changes in lignocellulosic supramo — lecular and ultrastructure during dilute acid pretreatment of Populus and switchgrass. Biomass and Bioenergy, 2010. 34(12): p. 1885-1895.

127. X. Zhou, J. Xu, Z. Wang, J. J. Cheng, R. Li, and R. Qu, Dilute sulfu­ric acid pretreatment of transgenic switchgrass for sugar production. Bioresource Technology, 2012. 104(0): p. 823-827.

128. Z. Hu, M. Foston, and A. J. Ragauskas, Comparative studies on hydro­thermal pretreatment and enzymatic saccharification of leaves and internodes of alamo switchgrass. Bioresource Technology, 2011. 102(14): p. 7224-7228.

129. R. Gupta and Y. Y. Lee, Investigation of biomass degradation mech­anism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 2010. 101(21): p. 8185-8191.

130. R. J. Garlock, V. Balan, and B. E. Dale, Optimization of AFEX™ pre­treatment conditions and enzyme mixtures to maximize sugar release from upland and lowland switchgrass. Bioresource Technology, 2012. 104(0): p. 757-768.

131. J. Xu, J. J. Cheng, R. R. Sharma-Shivappa, and J. C. Burns, Lime pre­treatment of switchgrass at mild temperatures for ethanol produc­tion. Bioresource Technology, 2010. 101(8): p. 2900-2903.

132. C. Li, B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons, and S. Singh, Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology,

2010. 101(13): p. 4900-4906.

133. Y. Kim, N. S. Mosier, M. R. Ladisch, V. Ramesh Pallapolu, Y. Y. Lee, R. Garlock, V. Balan, B. E. Dale, B. S. Donohoe, T. B. Vinzant, R. T. Elander, M. Falls, R. Sierra, M. T. Holtzapple, J. Shi, M. A. Ebrik, T. Redmond, B. Yang, C. E. Wyman, and R. E. Warner, Comparative study on enzymatic digestibility of switchgrass varieties and har­vests processed by leading pretreatment technologies. Bioresource Technology, 2011. 102(24): p. 11089-11096.

134. R. J. Garlock, V. Balan, B. E. Dale, V. Ramesh Pallapolu, Y. Y. Lee, Y. Kim, N. S. Mosier, M. R. Ladisch, M. T. Holtzapple, M. Falls,

R. Sierra-Ramirez, J. Shi, M. A. Ebrik, T. Redmond, B. Yang, C. E. Wyman, B. S. Donohoe, T. B. Vinzant, R. T. Elander, B. Hames,

S. Thomas, and R. E. Warner, Comparative material balances around pretreatment technologies for the conversion of switchgrass to solu­ble sugars. Bioresource Technology, 2011. 102(24): p. 11063-11071.

135. C. E. Wyman, V. Balan, B. E. Dale, R. T. Elander, M. Falls, B. Hames, M. T. Holtzapple, M. R. Ladisch, Y. Y. Lee, N. Mosier, V. R. Pallapolu, J. Shi, S. R. Thomas, and R. E. Warner, Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 2011. 102(24): p. 11052-11062.

136. K. C. Nlewem and M. E. Thrash Jr, Comparison of different pretreat­ment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresource Technology, 2010. 101(14): p. 5426-5430.

137. N. K. Pessani, H. K. Atiyeh, M. R. Wilkins, D. D. Bellmer, and I. M. Banat, Simultaneous saccharification and fermentation of Kanlow switch — grass by thermotolerant Kluyveromyces marxianus IMB3: The effect of enzyme loading, temperature and higher solid loadings. Bioresource Technology, 2011. 102(22): p. 10618-10624.

138. B. Bals, C. Rogers, M. Jin, V. Balan, and B. Dale, Evaluation of ammo­nia fibre expansion (AFEX) pretreatment for enzymatic hydrolysis of switchgrass harvested in different seasons and locations. Biotechnology for Biofuels, 2010. 3.

139. O. Faix, D. Meier, and O. Beinhoff, Analysis of lignocelluloses and lignins from Arundo donax L. and Miscanthus sinensis Anderss., and hydroliquefaction of Miscanthus. Biomass, 1989. 18(2): p. 109-126.

140. T. Le Ngoc Huyen, C. Remond, R. M. Dheilly, and B. Chabbert, Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus. Bioresource Technology, 2010. 101(21): p. 8224-8231.

141. E. A. Heaton, F. G. Dohleman, A. F. Miguez, J. A. Juvik, V. Lozovaya, J. Widholm, O. A. Zabotina, G. F. McIsaac, M. B. David, T. B. Voigt, N. N. Boersma, and S. P. Long, Chapter 3 — Miscanthus: A promising biomass crop, in Advances in Botanical Research, K. Jean-Claude and D. Michel, Editors. 2010, Academic Press. p. 75-137.

142. C. Chang-Hung, Miscanthus plants used as an alternative biofuel material: The basic studies on ecology and molecular evolution. Renewable Energy, 2009. 34(8): p. 1908-1912.

143. J. Uffe, Benefits versus risks of growing biofuel crops: the case of Miscanthus. Current Opinion in Environmental Sustainability, 2011. 3(1-2): p. 24-30.

144. I. Lewandowski, J. M.O. Scurlock, E. Lindvall, and M. Christou, The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 2003. 25(4): p. 335-361.

145. E. Heaton, T. Voigt, and S. P. Long, A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioenergy, 2004. 27(1): p. 21-30.

146. D. G. Christian, A. B. Riche, and N. E. Yates, Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 succes­sive harvests. Industrial Crops and Products, 2008. 28(3): p. 320-327.

147. J. C. Clifton-brown, J. Breuer, and M. B. Jones, Carbon mitigation by the energy crop, Miscanthus. Global Change Biology, 2007. 13(11): p. 2296-2307.

148. E. A. Heaton, F. G. Dohleman, and S. P. Long, Meeting US biofuel goals with less land: The potential of Miscanthus. Global Change Biology, 2008. 14(9): p. 2000-2014.

149. J. Lewandowski, J. C. Clifton-Brown, J. M.O. Scurlock, and W. Huisman, Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy, 2000. 19(4): p. 209-227.

150. J. N. Barney and J. M. DiTomaso, Nonnative species and bioenergy: Are we cultivating the next invader? BioScience, 2008. 58(1): p. 64-70.

151. F. G. Dohleman and S. P. Long, More productive than maize in the Midwest: How does Miscanthus do it? Plant Physiology, 2009. 150(4): p. 2104-2115.

152. J. L. Propheter, S. A. Staggenborg, X. Wu, and D. Wang, Performance of annual and perennial biofuel crops: Yield during the first two years. Agronomy Journal, 2010. 102(2): p. 806-814.

153. M. Himken, J. Lammel, D. Neukirchen, U. Czypionka-Krause, and H. W. Olfs, Cultivation of Miscanthus under West European condi­tions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil, 1997. 189(1): p. 117-126.

154. C. V. Beale and S. P. Long, Seasonal dynamics of nutrient accumu­lation and partitioning in the perennial C4-grasses miscanthus x Giganteus and Spartina cynosuroides. Biomass and Bioenergy, 1997. 12(6): p. 419-428.

155. A. Sorensen, P. J. Teller, T. Hilstram, and B. K. Ahring, Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treat­ment. Bioresource Technology, 2008. 99(14): p. 6602-6607.

156. P. Boonmanumsin, S. Treeboobpha, K. Jeamjumnunja, A. Luengnaruemitchai, T. Chaisuwan, and S. Wongkasemjit, Release of monomeric sugars from Miscanthus sinensis by microwave — assisted ammonia and phosphoric acid treatments. Bioresource Technology, 2012. 103(1): p. 425-431.

157. C. Vanderghem, Y. Brostaux, N. Jacquet, C. Blecker, and M. Paquot, Optimization of formic/acetic acid delignification of Miscanthus x giganteus for enzymatic hydrolysis using response surface method­ology. Industrial Crops and Products, 2012. 35(1): p. 280-286.

158. C. Vanderghem, A. Richel, N. Jacquet, C. Blecker, and M. Paquot, Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins. Polymer Degradation and Stability, 2011. 96(10): p. 1761-1770.

159. H. Rodriguez, S. Padmanabhan, G. Poon, and J. M. Prausnitz, Addition of ammonia and/or oxygen to an ionic liquid for delignification of miscanthus. Bioresource Technology, 2011. 102(17): p. 7946-7952.

160. B. Wang, X. Wang, and H. Feng, Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresource Technology, 2010. 101(2): p. 752-760.

161. G. Brudecki, I. Cybulska, and K. Rosentrater, Integration of extrusion and clean fractionation processes as a pre-treatment technology for prairie cordgrass. Bioresource Technology, 2012.

162. G. Brudecki, I. Cybulska, K. Rosentrater, and J. Julson, Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass. Bioresource Technology, (0).

163. I. Cybulska, G. Brudecki, K. Rosentrater, J. L. Julson, and H. Lei, Comparative study of organosolv lignin extracted from prairie cord — grass, switchgrass and corn stover. Bioresource Technology, 2012. 118: p. 30-36.

164. I. Cybulska, H. Lei, J. Julson, and G. Brudecki, Optimization of modi­fied clean fractionation of prairie cordgrass. International Journal of Agricultural and Biological Engineering, 2012. 5(2).

165. A. D. Eckard, K. Muthukumarappan, and W. Gibbons, Modeling of pretreatment condition of extrusion-pretreated prairie cordgrass and corn stover with poly (oxyethylen) 20 sorbitan monolaurate. Applied Biochemistry and Biotechnology, 2012. 167(2): p. 377-393.

166. L. G. Angelini, L. Ceccarini, and E. Bonari, Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practices. European Journal of Agronomy, 2005. 22(4): p. 375-389.

167. S. L. Cosentino, V. Copani, G. M. D’Agosta, E. Sanzone, and M. Mantineo, First results on evaluation of Arundo donax L. clones collected in Southern Italy. Industrial Crops and Products, 2006. 23(2):

p. 212-222.

168. R. L. Graham, L. L. Wright, and A. F. Turhollow, The potential for short — rotation woody crops to reduce US CO2 emissions. Climatic Change, 1992. 22(3): p. 223-238.

169. C. P. Neto, A. Seca, A. M. Nunes, M. A. Coimbra, F. Domingues, D. Evtuguin, A. Silvestre, and J. A.S. Cavaleiro, Variations in chemi­cal composition and structure of macromolecular components in dif­ferent morphological regions and maturity stages of Arundo donax. Industrial Crops and Products, 1997. 6(1): p. 51-58.

170. M. Ask, K. Olofsson, T. Di Felice, L. Ruohonen, M. Penttila, G. Liden, and L. Olsson, Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochemistry, 2012. 47(10): p. 1452-1459.

171. I. De Bari, F. Liuzzi, A. Villone, and G. Braccio, Hydrolysis of con­centrated suspensions of steam pretreated Arundo donax. Applied Energy, 2013. 102: p. 179-189.

172. D. Scordia, S. L. Cosentino, J. W. Lee, and T. W. Jeffries, Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass and Bioenergy, 2011. 35(7): p. 3018-3024.

173. A. A. Shatalov and H. Pereira, Kinetics of polysaccharide degrada­tion during ethanol-alkali delignification of giant reed — Part 2. Minor carbohydrates and uronic acids. Carbohydrate Polymers, 2005. 61(3): p. 304-313.

174. A. A. Shatalov and H. Pereira, Kinetics of polysaccharide degradation during ethanol-alkali delignification of giant reed — Part 1. Cellulose and xylan. Carbohydrate Polymers, 2005. 59(4): p. 435-442.

175. A. A. Shatalov and H. Pereira, Xylose production from giant reed (Arundo donax L.): Modeling and optimization of dilute acid hydro­lysis. Carbohydrate Polymers, 2012. 87(1): p. 210-217.

176. L. Kukk, H. Roostalu, E. Suuster, H. Rossner, M. Shanskiy, and A. Astover, Reed canary grass biomass yield and energy use efficiency in Northern European pedoclimatic conditions. Biomass and Bioenergy,

2011. 35(10): p. 4407-4416.

177. M. Finell, M. Arshadi, and R. Gref, Carbohydrate composition in delayed harvested reed canary grass. Biomass and Bioenergy, 2011. 35(3): p. 1097-1102.

178. B. S. Dien, M. D. Casler, R. E. Hector, L. B. Iten, N. N. Nichols, J. A. Mertens, and M. A. Cotta, Biochemical processing of reed canarygrass into fuel ethanol. International Journal of Low-Carbon Technologies, 2012. 7(4): p. 338-347.

179. T. C. Bradshaw, H. Alizadeh, F. Teymouri, V. Balan, and B. E. Dale, Ammonia fiber expansion pretreatment and enzymatic hydrolysis on two different growth stages of reed canarygrass. Applied Biochemistry and Biotechnology, 2007. 137-140(1-12): p. 395-405.

180. B. S. Dien, H.-J. G. Jung, K. P. Vogel, M. D. Casler, J. F.S. Lamb, L. Iten, R. B. Mitchell, and G. Sarath, Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 2006. 30(10): p. 880-891.

181. M. F. Digman, K. J. Shinners, M. D. Casler, B. S. Dien, R. D. Hatfield, H.-J. G. Jung, R. E. Muck, and P. J. Weimer, Optimizing on-farm pre­treatment of perennial grasses for fuel ethanol production. Bioresource Technology, 2010. 101(14): p. 5305-5314.

182. J. F.S. Lamb, H. J.G. Jung, C. C. Sheaffer, and D. A. Samac, Alfalfa leaf protein and stem cell wall polysaccharide yields under hay and bio­mass management systems. Crop Science, 2007. 47(4): p. 1407-1415.

183. G. Parkinson, Chementator: Alfalfa — A potential new source of plas­tic, and of ethanol. Chemical Engineering, 2002. 109(8): p. 21.

184. B. S. Dien, H. J.G. Jung, K. P. Vogel, M. D. Casler, J. F.S. Lamb, L. Iten, R. B. Mitchell, and G. Sarath, Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 2006. 30(10): p. 880-891.

185. R. G. Koegel, H. R. Sreenath, and R. J. Straub. Liquid hot water pre­treatment of alfalfa fiber destined for ethanol production. 1997.

186. H. K. Sreenath, R. G. Koegel, A. B. Moldes, T. W. Jeffries, and R. J. Straub, Enzymic saccharification of alfalfa fibre after liquid hot water pre­treatment. Process Biochemistry, 1999. 35(1-2): p. 33-41.

187. L. Xu and U. Tschirner, Peracetic acid pretreatment of alfalfa stem and aspen biomass. BioResources, 2012. 7(1): p. 203-216.

188. B. S. Dien, D. J. Miller, R. E. Hector, R. A. Dixon, F. Chen, M. McCaslin, P. Reisen, G. Sarath, and M. A. Cotta, Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresource Technology, 2011. 102(11): p. 6479-6486.

189. J. G. Robins, Cool-season grasses produce more total biomass across the growing season than do warm-season grasses when managed with an applied irrigation gradient. Biomass and Bioenergy, 2010. 34(4): p. 500-505.

190. M. E. Jarchow and M. Liebman, Nutrient enrichment reduces comple­mentarity and increases priority effects in prairies managed for bio­energy. Biomass and Bioenergy, 2012. 36(0): p. 381-389.

191. P. G. Jefferson, W. P. McCaughey, K. May, J. Woosaree, and L. McFarlane, Potential utilization of native prairie grasses from western Canada as ethanol feedstock. Canadian Journal of Plant Science, 2004. 84(4): p. 1067-1075.

192. K. Hakala, H.-M. Nikunen, T. Sinkko, and O. Niemelainen, Yields and greenhouse gas emissions of cultivation of red clover-grass leys as assessed by LCA when fertilised with organic or mineral fertilis­ers. Biomass and Bioenergy, 2012. 46(0): p. 111-124.

193. P. Alvo and K. Belkacemi, Enzymatic saccharification of milled timo­thy (Phleum pratense L.) and alfalfa (Medicago sativa L.). Bioresource Technology, 1997. 61(3): p. 185-198.

194. R. S. Zalesny Jr, R. B. Hall, J. A. Zalesny, B. G. McMahon, W. E. Berguson, and G. R. Stanosz, Biomass and genotype x environment interactions of Populus energy crops in the Midwestern United States. Bioenergy Research, 2009. 2(3): p. 106-122.

195. M. E. Goerndt and C. Mize, Short-rotation woody biomass as a crop on marginal lands in Iowa. Northern Journal of Applied Forestry, 2008. 25(2): p. 82-86.

196. Z. J. Wang, J. Y. Zhu, R. S. Zalesny Jr, and K. F. Chen, Ethanol produc­tion from poplar wood through enzymatic saccharification and fer­mentation by dilute acid and SPORL pretreatments. Fuel, 2012. 95: p. 606-614.

197. K. Wang, H. Yang, X. Yao, F. Xu, and R. C. Sun, Structural transforma­tion of hemicelluloses and lignin from triploid poplar during acid — pretreatment based biorefinery process. Bioresource Technology, 2012. 116: p. 99-106.

198. H. Yang, K. Wang, F. Xu, R. C. Sun, and Y. Lu, H2SO4-catalyzed hydro­thermal pretreatment of triploid poplar to enhance enzymatic hydro­lysis. Industrial and Engineering Chemistry Research, 2012. 51(36): p. 11598-11604.

199. X. Song, M. Zhang, Z. J. Pei, and D. Wang, Preliminary study on pre­treatment of poplar wood for biofuel production. Biofuels, 2012. 3(5): p. 525-533.

200. B. Kohn, M. Davis, and G. E. Maciel, In situ study of dilute H2SO4 pretreatment of 13C-enriched poplar wood, using 13C NMR. Energy and Fuels, 2011. 25(5): p. 2301-2313.

201. F. Schutt, N. P. Haas, L. Dehne, G. Koch, R. Janzon, and B. Saake, Steam pretreatment for enzymatic hydrolysis of poplar wood:

Comparison of optimal conditions with and without SO2 impregna­tion. Holzforschung, 2013. 67(1): p. 9-17.

202. F. Schutt, J. Puls, and B. Saake, Optimization of steam pretreatment conditions for enzymatic hydrolysis of poplar wood. Holzforschung, 2011. 65(4): p. 453-459.

203. S. Liu, G. Fang, Q. Wang, Y. Deng, and S. Han, Kinetic modeling of enzymatic hydrolysis of poplar waste by wet oxidation pretreatment. BioResources, 2011. 6(4): p. 4229-4237.

204. I. A. Panagiotopoulos, R. P Chandra, and J. N. Saddler, A two-stage pretreatment approach to maximise sugar yield and enhance reactive lignin recovery from poplar wood chips. Bioresource Technology, 2013. 130: p. 570-577.

205. H. Yang, K. Wang, W. Wang, and R. C. Sun, Improved bioconversion of poplar by synergistic treatments with white-rot fungus Trametes velutina D10149 pretreatment and alkaline fractionation. Bioresource Technology, 2013. 130: p. 578-583.

206. T. Q. Yuan, W. Wang, F. Xu, and R. C. Sun, Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: Effect of integrated pretreatment on enzymatic hydrolysis. Bioresource Technology, 2013.

207. C. P. Mitchell, New cultural treatments and yield optimisation. Biomass and Bioenergy, 1995. 9(1-5): p. 11-34.

208. T. A. Volk, L. P. Abrahamson, C. A. Nowak, L. B. Smart, P. J. Tharakan, and E. H. White, The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agrofor­estry and phytoremediation. Biomass and Bioenergy, 2006. 30(8-9): p. 715-727.

209. M. J. Stolarski, S. Szczukowski, J. Tworkowski, and A. Klasa, Yield, energy parameters and chemical composition of short-rotation wil­low biomass. Industrial Crops and Products, 2013. 46: p. 60-65.

210. E. Butler, G. Devlin, D. Meier, and K. McDonnell, Characterisation of spruce, salix, miscanthus and wheat straw for pyrolysis applications. Bioresource Technology, 2013. 131: p. 202-209.

211. A. L. Stephenson, P. Dupree, S. A. Scott, and J. S. Dennis, The environ­mental and economic sustainability of potential bioethanol from wil­low in the UK. Bioresource Technology, 2010. 101(24): p. 9612-9623.

212. S. J. Horn, M. M. Estevez, H. K. Nielsen, R. Linjordet, and V. G.H. Eijsink, Biogas production and saccharification of Salix pretreated at different steam explosion conditions. Bioresource Technology, 2011. 102(17): p. 7932-7936.

213. A. Brandt, M. J. Ray, T. Q. To, D. J. Leak, R. J. Murphy, and T. Welton, Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid — water mixtures. Green Chemistry, 2011. 13(9): p. 2489-2499.

214. R. Eklund, M. Galbe, and G. Zacchi, The influence of SO2 and H2SO4 impregnation of willow prior to steam pretreatment. Bioresource Technology, 1995. 52(3): p. 225-229.

215. R. Eklund, M. Galbe, and G. Zacchi, Optimization of temperature and enzyme concentration in the enzymatic saccharification of steam-pretreated willow. Enzyme and Microbial Technology, 1990. 12(3): p. 225-228.

216. R. Eklund, M. Galbe, and G. Zacchi, Two-stage steam pretreatment of willow for increased pentose yield. Journal of Wood Chemistry and Technology, 1988. 8(3): p. 379-392.

217. R. Eklund and G. Zacchi, Simultaneous saccharification and fermen­tation of steam-pretreated willow. Enzyme and Microbial Technology, 1995. 17(3): p. 255-259.

218. P. Sassner, M. Galbe, and G. Zacchi, Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme and Microbial Technology, 2006. 39(4): p. 756-762.

219. P. Sassner, C. G. Martensson, M. Galbe, and G. Zacchi, Steam pretreat­ment of H2SO4-impregnated Salix for the production of bioethanol. Bioresource Technology, 2008. 99(1): p. 137-145.

220. E. Palmqvist, B. Hahn-Hagerdal, M. Galbe, and G. Zacchi, The effect of water-soluble inhibitors from steam-pretreated willow on enzy­matic hydrolysis and ethanol fermentation. Enzyme and Microbial Technology, 1996. 19(6): p. 470-476.

221. W. J.J. Huijgen, A. T. Smit, J. H. Reith, and H. D. Uil, Catalytic organo — solv fractionation of willow wood and wheat straw as pretreatment for enzymatic cellulose hydrolysis. Journal of Chemical Technology and Biotechnology, 2011. 86(11): p. 1428-1438.

222. H. Yu, G. Guo, X. Zhang, K. Yan, and C. Xu, The effect of biologi­cal pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresource Technology, 2009. 100(21): p. 5170-5175.

223. H. Yu and X. Zhang, Effect of biological pretreatment with Trametes vesicolor on the enzymatic hydrolysis of softwood and hardwood. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2009. 25(7): p. 993-998.

224. P. Sassner, C.-G. Martensson, M. Galbe, and G. Zacchi, Steam pre­treatment of H2SO4-impregnated Salix for the production of bioetha­nol. Bioresource Technology, 2008. 99(1): p. 137-145.

225. R. Hashaikeh, Z. Fang, I. S. Butler, J. Hawari, and J. A. Kozinski, Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel, 2007. 86(10-11): p. 1614-1622.

226. A. Ferraz, J. Baeza, J. Rodriguez, and J. Freer, Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresource Technology, 2000. 74(3): p. 201-212.

227. F. Huang and A. J. Ragauskas, Dilute H2SO4 and SO2 pretreatments of Loblolly pine wood residue for bioethanol production. Industrial Biotechnology, 2012. 8(1): p. 22-30.

228. S. M. Ewanick, R. Bura, and J. N. Saddler, Acid-catalyzed steam pre­treatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnology and Bioengineering, 2007. 98(4): p. 737-746.

229. P. Salehian and K. Karimi, Alkali pretreatment for improvement of biogas and ethanol production from different waste parts of pine tree. Industrial and Engineering Chemistry Research, 2013. 52(2): p. 972-978.

230. D. Rana, V. Rana, and B. K. Ahring, Producing high sugar concentra­tions from loblolly pine using wet explosion pretreatment. Bioresource Technology, 2012. 121: p. 61-67.

231. N. Park, H. Y. Kim, B. W. Koo, H. Yeo, and I. G. Choi, Organosolv pre­treatment with various catalysts for enhancing enzymatic hydroly­sis of pitch pine (Pinus rigida). Bioresource Technology, 2010. 101(18): p. 7046-7053.

232. X. Pan, D. Xie, R. W. Yu, D. Lam, and J. N. Saddler, Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: Fractionation and process optimization. Industrial and Engineering Chemistry Research, 2007. 46(8): p. 2609-2617.

233. A. Brandt, J. P. Hallett, D. J. Leak, R. J. Murphy, and T. Welton, The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chemistry, 2010. 12(4): p. 672-679.

234. M. von Sivers and G. Zacchi, A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technology, 1995. 51(1): p. 43-52.

235. W. J. Frederick Jr, S. J. Lien, C. E. Courchene, N. A. DeMartini, A. J. Ragauskas, and K. Iisa, Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment. Bioresource Technology, 2008. 99(11): p. 5051-5057.

236. S. Tian, X. L. Luo, X. S. Yang, and J. Y. Zhu, Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification. Bioresource Technology, 2010. 101(22): p. 8678-8685.

237. S. Gonzalez-Garcfa, M. T. Moreira, and G. Feijoo, Environmental aspects of eucalyptus based ethanol production and use. Science of the Total Environment, 2012. 438: p. 1-8.

238. C. N. Hamelinck, G. Van Hooijdonk, and A. P.C. Faaij, Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle — and long-term. Biomass and Bioenergy, 2005. 28(4): p. 384-410.

239. R. Gonzalez, T. Treasure, R. Phillips, H. Jameel, D. Saloni, R. Abt, and J. Wright, Converting Eucalyptus biomass into ethanol: Financial and sensitivity analysis in a co-current dilute acid process. Part II. Biomass and Bioenergy, 2011. 35(2): p. 767-772.

240. M. Fernandez R, S. Valenzuela A, and C. Balocchi L, RAPD and freezing resistance in Eucalyptus globulus. Electronic Journal of Biotechnology, 2006. 9(3): p. 303-309.

241. A. L. Shvaleva, F. Costa E. Silva, E. Breia, L. Jouve, J. F. Hausman, M. H. Almeida, J. P. Maroco, M. L. Rodrigues, J. S. Pereira, and M. M. Chaves, Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiology, 2006. 26(2): p. 239-248.

242. O. Bison, M. A.P. Ramalho, G. D.S. Peganha Rezende, A. M. Aguiar, and M. D.V. de Resende, Combining ability of elite clones of Eucalyptus grandis and Eucalyptus urophylla with Eucalyptus globulus. Genetics and Molecular Biology, 2007. 30(2): p. 417-422.

243. M. Yanez-S, J. Rojas, J. Castro, A. Ragauskas, J. Baeza, and J. Freer, Fuel ethanol production from Eucalyptus globulus wood by auto — catalized organosolv pretreatment ethanol-water and SSF. Journal of Chemical Technology and Biotechnology, 2013. 88(1): p. 39-48.

244. Y. Teramoto, N. Tanaka, S. H. Lee, and T. Endo, Pretreatment of euca­lyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnology and Bioengineering, 2008. 99(1): p. 75-85.

245. M. Oliet, F. Rodriguez, A. Santos, M. A. Gilarranz, F. Garcia-Ochoa, and J. Tijero, Organosolv delignification of Eucalyptus globu­lus: Kinetic study of autocatalyzed ethanol pulping. Industrial and Engineering Chemistry Research, 2000. 39(1): p. 34-39.

246. A. Romani, G. Garrote, J. L. Alonso, and J. C. Parajo, Bioethanol pro­duction from hydrothermally pretreated Eucalyptus globulus wood. Bioresource Technology, 2010. 101(22): p. 8706-8712.

247. A. Romani, G. Garrote, F. Lopez, and J. C. Parajo, Eucalyptus globu­lus wood fractionation by autohydrolysis and organosolv delignifi — cation. Bioresource Technology, 2011. 102(10): p. 5896-5904.

248. S. McIntosh, T. Vancov, J. Palmer, and M. Spain, Ethanol production from Eucalyptus plantation thinnings. Bioresource Technology, 2012. 110(0): p. 264-272.

249. Q. Yu, X. Zhuang, Z. Yuan, Q. Wang, W. Qi, W. Wang, Y. Zhang, J. Xu, and H. Xu, Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cel­lulose. Bioresource Technology, 2010. 101(13): p. 4895-4899.

250. A. Romani, G. Garrote, and J. C. Parajo, Bioethanol produc­tion from autohydrolyzed Eucalyptus globulus by simultaneous saccharification and fermentation operating at high solids loading. Fuel, 2012. 94(0): p. 305-312.

251. R. Gonzalez, T. Treasure, J. Wright, D. Saloni, R. Phillips, R. Abt, and H. Jameel, Exploring the potential of Eucalyptus for energy produc­tion in the Southern United States: Financial analysis of delivered biomass. Part I. Biomass and Bioenergy, 2011. 35(2): p. 755-766.

252. Y. Zhang, S. Joshi, and H. L. MacLean, Can ethanol alone meet California’s low carbon fuel standard? An evaluation of feedstock and conversion alternatives. Environmental Research Letters, 2010. 5(1).

253. M. Chester and E. Martin, Cellulosic ethanol from municipal solid waste: A case study of the economic, energy, and greenhouse gas impacts in California. Environmental Science and Technology, 2009. 43(14): p. 5183-5189.

254. E. Schmitt, R. Bura, R. Gustafson, J. Cooper, and A. Vajzovic, Converting lignocellulosic solid waste into ethanol for the State of Washington: An investigation of treatment technologies and environ­mental impacts. Bioresource Technology, 2012. 104(0): p. 400-409.

255. S. Li, X. Zhang, and J. M. Andresen, Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel, 2012. 92(1): p. 84-88.

256. Fulcrum. www. fulcrum-bioenergy. com. 2013 [cited 2013 June 12].

Комментарии запрещены.