Comparisons of Common Dehydration Methods
There are several methods available for dehydration of wet ethanol to fuel grade nearly anhydrous ethanol. The choice of the method depends on the energy requirements and the capital cost of the technology. Dilute ethanol-water mixture is usually first concentrated by fractional distillation to approximately 90% ethanol and then is dehydrated by one of the several processes discussed earlier to produce fuel grade ethanol. The energy requirements of ethanol purification by fractional distillation remain essentially constant for feeds containing more than 15-20 wt% ethanol and less than 92-94 wt% ethanol. As ethanol concentration in the feed decreases, the reflux ratio required must increase dramatically, and this results in increased energy requirements. The fractional distillation requires a disproportionate raise in energy at product concentrations above 92-94 wt% ethanol due to the shape of the vapor-liquid equilibrium curve for the ethanol-water system. Table 15.6 shows a number of common dehydration methods and also shows the amount of energy necessary to accomplish the
Table 15.6 Energy consumption of various processes for dehydration of wet ethanol to fuel grade ethanol [2].
|
water removal from aqueous ethanol as a fraction of energy in a kilogram of anhydrous ethanol.
The combustion energy of anhydrous ethanol is about 29.5 MJ/ kg, and the amount of energy required for drying ethanol as a percentage of energy in ethanol is shown in the last column. Extractive distillation with ethylene glycol requires the highest amount of energy of 18.84 MJ/kg, and extractive distillations with salts require less energy compared to other distillation methods. Extractive distillations with calcium chloride require the least amount of energy of 5.02 MJ/kg.
The non-distillation processes for the production of anhydrous ethanol includes adsorption and membrane pervaporation. In comparison to all other methods, adsorption on molecular sieves requires only a distinctly small amount of energy of 0.528 MJ/kg, which is only 0.89% of the energy in processing equal weight of ethanol. This includes the energy required to regenerate the molecular sieve after adsorption of water from ethanol vapor containing 7.4% water, heat required to vaporize the feed, the energy needed to heat the regenerating air from ambient to an inlet temperature of 95°C and heat losses from the overall system. The heat of adsorption is retained in the bed if adsorption is stopped when the concentration wave begins to leave the adsorption column. Hence, it is desirable to adsorb up flow and regenerate by passing gas down flow, thus making use of some of the heat of adsorption stored at the upper part of the bed to drive off adsorbed water from the bottom of the bed. In 2008, Kaminski et al. reported a comparison of vapor permeation, pervaporation, azeotropic distillation and adsorption on molecular sieve processes on the basis of cost of production of anhydrous ethanol [68]. For small installations (100 dm3/day) they showed the cost of ethanol dehydration by azeotropic distillation is twice as high in the case of adsorption, and 1.5 times higher than that in pervaporation.
1. K. Kupiec and A. Kubala, Dehydration of ethanol used as a fuel additive. Environment Protection Engineering, 2006. 32(1): p. 151-159.
2. S. Kumar, N. Singh, and R. Prasad, Anhydrous ethanol: A renewable source of energy. Renewable and Sustainable Energy Reviews, 2010. 14(7): p.1830-1844.
3. S. Al-Asheh, F. Banat, and N. Al-Lagtah, Separation of ethanol-water mixtures using molecular sieves and biobased adsorbents. Chemical Engineering Research and Design, 2004. 82(7): p. 855-864.
4. J. S. Jeong, H. Jeon, K. M. Ko, B. Chung, and G. W. Choi, Production of anhydrous ethanol using various PSA (Pressure Swing Adsorption) processes in pilot plant. Renewable Energy, 2012. 42: p. 41-45.
5. J. S. Jang, Y. K. Cho, G. T. Jeong, and S. K. Kim, Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess and Biosystems Engineering, 2012. 35(1-2): p. 11-18.
6. J. S. Jeong, B. U. Jang, Y. R. Kim, B. W. Chung, and G. W. Choi, Production of dehydrated fuel ethanol by pressure swing adsorption process in the pilot plant. Korean Journal of Chemical Engineering, 2009. 26(5): p. 1308-1312.
7. M. Simo, S. Sivashanmugam, C. J. Brown, and V. Hlavacek, Adsorption/desorption of water and ethanol on 3A zeolite in nearadiabatic fixed bed. Industrial and Engineering Chemistry Research, 2009. 48(20): p. 9247-9260.
8. C. D. Tereck. Technology developments in Psa ethanol dehydration. 2008.
9. K. Kupiec, J. Rakoczy, L. Zielinski, and A. Georgiou, Adsorption — desorption cycles for the separation of vapour-phase ethanol/water mixtures. Adsorption Science and Technology, 2008. 26(3): p. 209-224.
10. T. Yamamoto, Y. H. Kim, B. C. Kim, A. Endo, N. Thongprachan, and T. Ohmori, Adsorption characteristics of zeolites for dehydration of ethanol: Evaluation of diffusivity of water in porous structure. Chemical Engineering Journal, 2012. 181-182: p. 443-448.
11. M. R. Ladisch, M. Voloch, J. Hong, P. Bienkowski, and G. T. Tsao, Cornmeal adsorber for dehydrating ethanol vapors. Industrial & Engineering Chemistry Process Design and Development, 1984. 23(3): p. 437-443.
12. H. Chang, X. G. Yuan, H. Tian, and A. W. Zeng, Experimental study on the adsorption of water and ethanol by cornmeal for ethanol dehydration. Industrial and Engineering Chemistry Research, 2006. 45(11): p. 3916-3921.
13. T. J. Benson and C. E. George, Cellulose based adsorbent materials for the dehydration of ethanol using thermal swing adsorption. Adsorption, 2005. 11(1 SUPPL.): p. 697-701.
14. C. Boonfung and P. Rattanaphanee, Pressure swing adsorption with cassava adsorbent for dehydration of ethanol vapor. World Academy of Science, Engineering and Technology, 2010. 71: p. 637-640.
15. J. A. Quintero and C. A. Cardona, Ethanol dehydration by adsorption with starchy and cellulosic materials. Industrial and Engineering Chemistry Research, 2009. 48(14): p. 6783-6788.
16. H. Chang, X. Yuan, and A. Zeng, Adsorption capability of biomass for ethanol dehydration. Huagong XuebaolJournal of Chemical Industry and Engineering (China), 2004. 55(2): p. 309-312.
17. S. Young, LXXIII. — The preparation of absolute alcohol from strong spirit. Journal of the Chemical Society, Transactions, 1902. 81: p. 707-717.
18. V. Gomis, A. Font, R. Pedraza, and M. D. Saquete, Isobaric vapor-liquid and vapor-liquid-liquid equilibrium data for the system water + ethanol + cyclohexane. Fluid Phase Equilibria, 2005. 235(1): p. 7-10.
19. V. Gomis, A. Font, R. Pedraza, and M. D. Saquete, Isobaric vapor-liquid and vapor-liquid-liquid equilibrium data for the water-ethanol — hexane system. Fluid Phase Equilibria, 2007. 259(1 SPEC. ISS.): p. 66-70.
20. V. Gomis, A. Font, and M. D. Saquete, Vapour-liquid-liquid and vapour-liquid equilibrium of the system water + ethanol + heptane at 101.3 kPa. Fluid Phase Equilibria, 2006. 248(2): p. 206-210.
21. V. Gomis, R. Pedraza, O. Frances, A. Font, and J. C. Asensi, Dehydration of ethanol using azeotropic distillation with isooctane. Industrial and Engineering Chemistry Research, 2007. 46(13): p. 4572-4576.
22. A. Font, J. C. Asensi, F. Ruiz, and V. Gomis, Application of isooctane to the dehydration of ethanol. Design of a column sequence to obtain absolute ethanol by heterogeneous azeotropic distillation. Industrial and Engineering Chemistry Research, 2003. 42(1): p. 140-144.
23. C. Black, Distillation modeling of ethanol recovery and dehydration processes for ethanol and gasohol. Chemical Engineering Progress, 1980. 76(9): p. 78-85.
24. A. M. Al-Amer, Investigating polymeric entrainers for azeotropic distillation of the ethanol/water and MTBE/methanol systems. Industrial and Engineering Chemistry Research, 2000. 39(10): p. 3901-3906.
25. F. M. Lee and R. H. Pahl, Solvent screening study and conceptual extractive distillation process to produce anhydrous ethanol from fermentation broth. Industrial and Engineering Chemistry Process Design and Development, 1985. 24(1): p. 168-172.
26. M. F. de Figueiredo, B. P. Guedes, J. M.M. de Araujo, L. G.S. Vasconcelos, and R. P. Brito, Optimal design of extractive distillation columns-A systematic procedure using a process simulator. Chemical Engineering Research and Design, 2011. 89(3): p. 341-346.
27. M. R.W. Maciel and R. P. Brito, Evaluation of the dynamic behavior of an extractive distillation column for dehydration of aqueous ethanol mixtures. Computers and Chemical Engineering, 1995. 19(SUPPL. 1): p. 405-408.
28. Y. Nishi, Vapor-liquid equilibrium relations for the system accompanied by hypothetical chemical reaction containing salt. J Chem Eng Jap, 1975. 8(3): p. 187-191.
29. D. Jaques and M. A. Galan, Isobaric LVE data for alcohol-water systems saturated with a salt which appear to contradict the Gibbs-Konovolov theorem. Chemical Engineering Science, 1980. 35(8): p. 1803-1804.
30. M. A. Galan, M. D. Labrador, and J. R. Alvarez, Salt effect in liquid — vapor equilibrium: Ethanol-water system saturated with strontium bromide, barium nitrate, and strontium nitrate. Journal of Chemical and Engineering Data, 1980. 25(1): p. 7-9.
31. T. C. Tan, W. K. Teo, and H. C. Ti, Vapor liquid equilibria of ethanol — water system saturated with glucose at subatmospheric pressures. Chemical Engineering Research and Design, 1988. 66(1): p. 75-83.
32. A. Grohan, Apparatus for producing anhydrous ethyl alcohol diretly from mashes, 1934: US Patent.
33. W. F. Furter, Extractive distillation by salt effect. Chemical Engineering Communications, 1992. 116: p. 35-40.
34. V. V. Namboodiri and L. M. Vane, High permeability membranes for the dehydration of low water content ethanol by pervaporation. Journal of Membrane Science, 2007. 306(1-2): p. 209-215.
35. P. Peng, B. Shi, and Y. Lan, A review of membrane materials for ethanol recovery by pervaporation. Separation Science and Technology, 2011. 46(2): p. 234-246.
36. X. Zhan, J. Li, J. Huang, and C. Chen, Ethanol perm-selective membranes by pervaporation. Progress in Chemistry, 2008. 20(9): p. 1416-1426.
37. P. Innachitra and S. Chinchiw, Ethanol-water separation by pervapora — tion using silicone and polyvinyl alcohol membranes. Songklanakarin Journal of Science and Technology, 2006. 28(5): p. 1109-1119.
38. A. M. Toikka, E. L. Aksenova, and Y. P. Kuznetsov, Comparative analysis of open evaporation and pervaporation in the ternary system water-ethanol-isopropanol. Russian Journal of Applied Chemistry, 2001. 74(6): p. 933-938.
39. X. Feng and R. Y.M. Huang, Liquid Separation by Membrane Pervaporation: A Review. Industrial and Engineering Chemistry Research, 1997. 36(4): p. 1048-1066.
40. J. G. Wijmans and R. W. Baker, The solution-diffusion model: A review. Journal of Membrane Science, 1995. 107(1-2): p. 1-21.
41. S. Amnuaypanich and N. Kongchana, Natural rubber/poly(acrylic acid) semi-interpenetrating polymer network membranes for the pervaporation of water-ethanol mixtures. Journal of Applied Polymer Science, 2009. 114(6): p. 3501-3509.
42. S. Amnuaypanich, J. Patthana, and P. Phinyocheep, Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semiinterpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water-ethanol mixtures. Chemical Engineering Science, 2009. 64(23): p. 4908-4918.
43. S. B. Teli, G. S. Gokavi, and T. M. Aminabhavi, Novel sodium alginate — poly(N-isopropylacrylamide) semi-interpenetrating polymer network membranes for pervaporation separation of water + ethanol mixtures. Separation and Purification Technology, 2007. 56(2): p. 150-157.
44. C. L. Chang and M. S. Chang, Preparation of composite membranes of functionalised silicone polymers and PVDF for pervaporation of ethanol-water mixture. Desalination, 2002. 148(1-3): p. 39-42.
45. E. Oikawa, K. Nozawa, T. Kaneko, and T. Aoki, Pervaporation of nonaqueous ethanol azeotropes through interpenetrating polymer network membranes prepared from poly(4-vinylpyridine) and poly(vinyl alcohol). Journal of Applied Polymer Science, 2001. 82(11): p. 2729-2738.
46. A. L. Buyanov, L. G. Revel’Skaya, Y. P. Kuznetzov, and A. K. Khripunov, Cellulose-poly(acrylamide-acrylic acid) interpenetrating polymer network membranes for the pervaporation of water-ethanol mixtures. II. Effect of ionic group contents and cellulose matrix modification. Journal of Applied Polymer Science, 2001. 80(9): p. 1452-1460.
47. A. L. Buyanov, L. G. Revel’skaya, Y. P. Kuznetzov, and A. S. Shestakova, Cellulose-poly(acrylamide or acrylic acid) interpenetrating polymer network membranes for the pervaporation of water-ethanol mixtures. Journal of Applied Polymer Science, 1998. 69(4): p. 761-769.
48. T. Miyata, J. I. Higuchi, H. Okuno, and T. Uragami, Preparation of polydimethylsiloxane/polystyrene interpenetrating polymer network membranes and permeation of aqueous ethanol solutions through the membranes by pervaporation. Journal of Applied Polymer Science, 1996. 61(8): p. 1315-1324.
49. L. Liang and E. Ruckenstein, Pervaporation of ethanol-water mixtures through polydimethylsiloxane-polystyrene interpenetrating polymer network supported membranes. Journal of Membrane Science, 1996. 114(2): p. 227-234.
50. L. Liang and E. Ruckenstein, Polyvinyl alcohol-polyacrylamide interpenetrating polymer network membranes and their pervaporation characteristics for ethanol-water mixtures. Journal of Membrane Science, 1995. 106(1-2): p. 167-182.
51. Y. K. Lee, T. M. Tak, D. S. Lee, and S. C. Kim, Cationic/anionic interpenetrating polymer network membranes for the pervaporation of ethanol-water mixture. Journal of Membrane Science, 1990. 52(2): p. 157-172.
52. J. W. Rhim and R. Y.M. Huang, Prediction of pervaporation separation characteristics for the ethanol-water-nylon-4 membrane system. Journal of Membrane Science, 1992. 70(2-3): p. 105-118.
53. T. Jin, Y. Ma, W. Matsuda, Y. Masuda, M. Nakajima, K. Ninomiya, T. Hiraoka, Y. Daiko, and T. Yazawa, Ethanol separation from ethanol aqueous solution by pervaporation using hydrophobic meso — porous silica membranes. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 2011. 119(1391): p. 549-556.
54. P. Peng, B. Shi, and Y. Lan, Preparation of PDMS-silica nanocomposite membranes with silane coupling for recovering ethanol by pervaporation. Separation Science and Technology, 2011. 46(3): p. 420-427.
55. Y. Ma, J. Wang, and T. Tsuru, Pervaporation of water/ethanol mixtures through microporous silica membranes. Separation and Purification Technology, 2009. 66(3): p. 479-485.
56. H. Ahn, H. Lee, S. B. Lee, and Y. Lee, Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination, 2006. 193(1-3): p. 244-251.
57. V. T. Magalad, G. S. Gokavi, M. N. Nadagouda, and T. M. Aminabhavi, Pervaporation separation of water-ethanol mixtures using organic — inorganic nanocomposite membranes. Journal of Physical Chemistry C, 2011. 115(30): p. 14731-14744.
58. V. T. Magalad, A. R. Supale, S. P. Maradur, G. S. Gokavi, and T. M. Aminabhavi, Preyssler type heteropolyacid-incorporated highly water-selective sodium alginate-based inorganic-organic hybrid membranes for pervaporation dehydration of ethanol. Chemical Engineering Journal, 2010. 159(1-3): p. 75-83.
59. B. P. Tripathi, M. Kumar, A. Saxena, and V. K. Shahi, Bifunctionalized organic-inorganic charged nanocomposite membrane for pervapo — ration dehydration of ethanol. Journal of Colloid and Interface Science, 2010. 346(1): p. 54-60.
60. T. Uragami, H. Matsugi, and T. Miyata, Pervaporation characteristics of organic-inorganic hybrid membranes composed of poly(vinyl alcohol-co-acrylic acid) and tetraethoxysilane for water/ethanol separation. Macromolecules, 2005. 38(20): p. 8440-8446.
61. M. S. Schehlmann, E. Wiedemann, and R. N. Lichtenthaler, Pervaporation and vapor permeation at the azeotropic point or in the vicinity of the LLE boundary phases of organic/aqueous mixtures. Journal of Membrane Science, 1995. 107(3): p. 277-282.
62. D. Van Baelen, B. Van Der Bruggen, K. Van Den Dungen, J. Degreve, and C. Vandecasteele, Pervaporation of water-alcohol mixtures and acetic acid-water mixtures. Chemical Engineering Science, 2005. 60(6): p. 1583-1590.
63. T. A. Peters, C. H.S. Poeth, N. E. Benes, H. C.W. M. Buijs, F. F. Vercauteren, and J. T.F. Keurentjes, Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; contradicting the flux-selectivity paradigm. Journal of Membrane Science, 2006. 276(1- 2): p. 42-50.
64. R. Nobrega, A. C. Habert, M. E.F. Garcia, R. J. Esposito, and C. P. Borges, Separation of ethanol/water mixtures by pervaporation through poly — vinylalcohol membranes, in: Proceedings of 3rd International Conference on Pervaporation Processes in the Chemical Industry. Bakish Materials Corporation, Englewood, NJ, USA, ,, 1988: p. 326-337.
65. C. K. Yeom, S. H. Lee, and J. M. Lee, Pervaporative permeations of homologous series of alcohol aqueous mixtures through a hydrophilic membrane. Journal of Applied Polymer Science, 2001. 79(4): p. 703-713.
66. Y. Q. Dong, L. Zhang, J. N. Shen, M. Y. Song, and H. L. Chen, Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination, 2006. 193(1-3): p. 202-210.
67. S. S. Gaykawad, Y. Zha, P. J. Punt, J. W. van Groenestijn, L. A.M. van der Wielen, and A. J.J. Straathof, Pervaporation of ethanol from lignocellu — losic fermentation broth. Bioresource Technology, 2013. 129: p. 469-476.
68. W. Kaminski, J. Marszalek, and A. Ciolkowska, Renewable energy source-Dehydrated ethanol. Chemical Engineering Journal, 2008. 135(1-2): p. 95-102.