Критическое состояние вещества и квантовый вакуум
Установлено, что у всех объектов разной химико-физической природы, в окрестности точки II, у разнородных физических и химических свойств разных веществ существует одинаковая температурная зависимость от всех критических параметров. Обобщённые параметры таких состояний численно близки и названы критическими индексами, благодаря которым нам удалось обнаружить взаимосвязь фундаментальных физических констант. В новой энергетической концепции термин и понятие «критический индекс» относятся к единичному солитону. В числе общепринятых положений о критическом состоянии вещества в эмпирической физике применяется следующая одномерная математическая модель критического состояния (31):
где: Р„ К Т — давление, объем и температура вещества, находящегося в критическом состоянии. Одномерность модели подтверждена всем объёмом эмпирической информации, накопленной учёными в этой области знаний. Это вселяет надежду (наряду с другими признаками одномерности процессов конденсации) на то, что методы расчётов и анализа квантового вакуума окажутся достаточно простыми.
Вблизи точек фазовых переходов растут флуктуации плотности, концентрации и др. физических величин, характеризующих вещество и его состояние. Рост флуктуации приводит к росту неоднородностей и, следовательно, к усилению рассеяния и поглощения энергии в веществе. Изменяется стохастическая природа движения частиц, т. е. происходит нарастание амплитуды «периодических колебаний градиентов» физических параметров. В системе возникают резонансные состояния, что сопровождается «захватом энергии в соседних частотах и перекачкой на другие частоты» и другими физическими эффектами, известными, например, в нелинейной оптике. Возникают устойчивые аномалии вязкости, теплопроводности и др. физических свойств вещества. Например, замедляется установление теплового равновесия, и в критической точке оно может достигать многих часов. Одинаково зависят от температуры вблизи критической точки и могут быть выражены однотипной формулой следующие свойства критического состояния вещества:
Эго частные производные как отношения изменений параметров энергии: объема газа V, намагниченности М, поляризации D, концентрации компонентах в смеси — к изменению давления Р, напряженности магнитного и электрического полей Н и Е, а также химического потенциала д — соответственно — при постоянных давлении Р и температуре Т вещества. Названным производным Онсагер присвоил безразмерный обобщённый термин — «термодинамические силы».
В указанной формуле: у — критический индекс; т={Т — Тк)/Тк — приведенная температура; Тк — критическая температура; г — радиус корреляции, характеризующий расстояние, на котором флуктуации параметров влияют друг на друга. Вместо приведенной температуры аналогичные результаты дают и другие приведенные физические параметры — давление, объем и др., отнесенные к их значениям в критическом состоянии. Физики полагают, что критический индекс у имеет одинаковые или близкие значения для всех физических систем. Эксперименты дают численные значения индекса: у ~1 — н 1,33. Аналогичная зависимость наблюдается и для теплоемкостей: Су~ Сн~ Ср~ Ср^_ ~ т ф где~0-н0,2 — критический индекс. Подобным же образом в окрестностях критической точки могут быть выражены: зависимость удельного объема газа — от давления, магнитного и электрического моментов системы и от напряженности поля, критические индексы в которых по свойствам и численным значениям «похожи» на а и у.
В критическом состоянии радиус корреляции г физико-химических свойств для всех веществ одинаков и зависит от температуры по степенному закону. По физическому содержанию понятие близко к среднему размеру флуктуации г ~ т где V—1/2-н 1/3 — предполагаемый учеными диапазон численных значений критических индексов (8, с. 331; 31).
Из приведенных формул критического состояния и выявленных нами аналитической взаимосвязи фундаментальных физических констант следует, что с приближением к точке фазового перехода г обращается в бесконечность. Вся макросистема переходит в резонансное состояние. Токи всех форм конденсирующейся энергии: электрический ток, теплопередача, магнитный ток, диффузия вещества и другие формы движения энергии и материи, градиенты которых, как «термодинамические силы», имеют одинаковые и неразличимые физико-химические содержания и равные кванты переносимой энергии. Всё это не что иное, как описание свойств плазмы — четвёртого агрегатного состояния вещества.
Можно сделать окончательный вывод, что критическое состояние вещества, плазма и стохастическое движение энергии в макросистеме по физическому содержанию — тождественные понятия. Из этого следует также, что взаимосвязанные (взаимно преобразующиеся) токи двух видов энергии в квантовом вакууме — инвариантны по свойствам. Эго означает, что количеству энергии Ем можно поставить в соответствие не всю энергию Егр, а лишь некоторую её часть Лё^, а также, что все производные энергии любых «одноимённых порядков» по приращению любого характеристического параметра, в том числе и геометрического, численно равны между собой, а коэффициенты при них должны быть равны единице.
Критическое состояние вещества является математико-физическим условием так называемого «великого объединения» фундаментальных физических констант: все параметры энергии, физические константы и единицы физических величин, находящихся в одном геометрическом масштабе, численно равны единице и безразмерны. Оба вида энергии в критическом состоянии утрачивают не только различия в размерностях единиц физических величин, но и количественную меру.
В критическом состоянии вещества вырабатывается минимальное количество энтропии. Квантовый вакуум представляет собой материю-энергию, находящуюся в критическом состоянии. Полагаем, что первопроходцами в рассмотрении подобных энергетических вопросов являются У. Томсон, Онсагер и Пригожин, что свойства критического состояния материи-энергии и, следовательно, квантового вакуума наилучшим образом отображают их теории и теоремы термодинамики необратимых процессов, в т. ч. наиболее важные из них: соотношения взаимности Онсагера (30).
Онсагер ввёл линейную взаимосвязь между потоками всех форм энергии и соответствующие феноменологические соотношения между ними. Так же аксиоматически он ввёл симметрию коэффициентов влияния при обезличенных (безразмерных) «термодинамических силах» на результирующий поток энергии в матрице, составленной из всех парных произведений термодинамических сил как векторов токов энергии, как математической модели «замороженного фрагмента» необратимого процесса. Вспоминаем открытие Михайличенко и Льва как обоснование «парности». Полагаем, что матрица Онсагера, составленная из безразмерных чисел, характеризующих множество взаимосвязанных пар «термодинамических сил», должна быть похожа на таблицу 1, главы 7. Но при условии предварительного введения следующих поправок в числа:
— на вырожденность сконденсированной энергии,
— на приведение единиц физических величин термодинамических сил к безразмерному виду.
— на приведение численных значений всякого рода физико-химических кон
стант в «одну мерность пространства», учитывая, что большинство констант имеют «сложную мерность» характеризуемых ими геометрических пространств, т. к. они являются «гибридами» одновременно «одномерно — двумерно-трёхмерных геометрических пространств» (11).
Гипотезу минимизации производства энтропии в энергетических процессах У. Томсон и Пригожин обосновали как следствие теории Онсагера: скорость роста энтропии равна нулю, если поток тепла равен нулю (30, с. 404).