Солнечная электростанция 30кВт - бизнес под ключ за 27000$

15.08.2018 Солнце в сеть




Производство оборудования и технологии
Рубрики

АРХИТЕКТУРНО-КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ СОЛНЕЧНЫХ домов

Применение солнечных установок для производства холода и кондиционирования воздуха представляет боль­шой интерес в условиях жаркого климата, так как при этом пиковая нагрузка охлаждения совпадает по време­ни с максимумом поступления солнечной радиации.

Тепловой комфорт человека зависит от скорости от­вода телоты, определяемой температурой и относитель­ной влажностью воздуха, скоростью его движения, фи­зической активностью человека. Отвод теплоты происхо­дит в результате конвекции, излучения и испарения влаги с поверхности тела человека.

Выбор способа охлаждения здания зависит от кли­матических условий: то, что подходит для сухого жар­кого климата пустынь, не годится для влажного клима­та тропиков и субтропиков. ,

Пассивное охлаждение. Одним из способов пассивно­го охлаждения дома является вентиляция прохладным ночным воздухом. Однако этот способ эффективен лишь в тех случаях, когда температура наружного воздуха в ночное время не превышает 18 °С. Вентиляция может быть естественной, когда она осуществляется при откры­вании окон и дверей, или механической, т. е. с примене­нием вентиляторов. Вентиляция ночным прохладным воз­духом охлаждает всю «тепловую массу» дома, т. е. соз­дает запас прохлады на следующий день. Эффективность этого способа возрастает в случае применения галечного аккумулятора, твердые частицы в котором охлаждаются при пропускании прохладного воздуха ночью, а днем са­ми охлаждают наружный воздух. Воздух, поступающий в дом, можно пропускать по проложенному в земле Ка­наду, цри этом он охлаждается.

Оригинальное архитектурное решение жилого дома с пассивной системой теплохолодоснабжения показано на рис. 42, где иллюстрируется принцип работы системы в режиме охлаждения. Летом наружный воздух движет­ся вследствие естественной тяги, охлаждаясь перед по­ступлением в дом при прохождении подземного канала и нагреваясь при отводе теплоты от внутренних поверх­ностей дома. Удаление нагретого воздуха осуществляет­ся из верхней точки дома через трубу с жалюзи с север­ной стороны. Отопление дома обеспечивается с помощью пристроенной гелиотеплицы и масляных радиаторов. Движение воздуха в доме зимой и летом регулируется с помощью клапанов. Стрелки указывают направление падения солнечных лучей в 12 часов дня 21 июня и 21 де­кабря. Зимой они через остекленные поверхности попада­ют в помещения, а летом нет.

Испарительное охлаждение. Эффективным способом охлаждения здания в условиях жаркого сухого климата

является испарительное охлаждение воздуха перед его поступлением в помещение или галечный аккумулятор. В камере испарительного охлаждения воздух контакти­рует со смачиваемыми поверхностями или струями воды. Наружный воздух с высокой температурой (35—40 °С) и низкой относительной влажностью (25—30 %) в ре-

image058

Рис. 42. Солнечный дом с пассивной системой теплохолодоснабже — ния (в режиме охлаждения):

/ — клапаны регулирования; 2 — 21 июня днем; 3 — 21 декабря днем; 4 — стек-
лянная подвижная дверь; 5, 6, 7 —теплый, чистый, , горячий воздух

зультате испарения воды охлаждается, а его относитель­ная влажность повышается. Он используется для охлаж­дения помещений дома, а при пропускании его через га­лечный аккумулятор происходит зарядка аккумулятора прохладой, которая в дневное время используется для охлаждения помещений.

В зданиях с пассивными гелиосистемами обычно для вентиляции предусматриваются специальные отверстия в противоположных стенах. Нагретый воздух удаляется через отверстия в верхней части южной стены дома. Бла­годаря этому понижается давление воздуха в здании и наружный воздух поступает через открытые окна, две­ри и отверстия, расположенные в нижней части северной стены.

Радиационное охлаждение. В районах с сухим жар­ким климатом большое количество теплоты излучается в ночное время в открытый космос. Температура косми­ческого пространства близка к абсолютному нулю, од­нако атмосфера Земли влияет таким образом, что эф­фективная температура излучения ночного небосвода мало отличается от температуры наружного воздуха. В условиях прозрачной атмосферы эта температура ни­же температуры воздуха на 8—14 °С в жарком влажном климате и на 14—20 °С в жарком сухом климате. Плот­ность потока излучения абсолютно черного тела при тем­пературе небосвода — 11 °С составляет 63 Вт/м2, а для материалов с высокой излучательной способностью при низких температурах, соответствующих длинам волн 8— 12 мкм, плотность потока излучения может составлять 50 Вт/м2 и температура излучающей поверхности может понижаться на 20—40 °С. При ясном-небе и прозрачной атмосфере вода в мелких открытых резервуарах в горах ночью замерзает.

Описанный эффект можно использовать для радиаци­онного охлаждения здания. Для этого крыша дома должна быть изготовлена из металлического листа с пе­редвижными теплоизоляционными щитами (рис. 43,а). В ночное время щиты снимают с металлической крыши и происходит излучение теплоты в окружающее прост­ранство. Охлаждение помещений осуществляется в ре-

image059

Рис. 43. Радиационное охлаждение дома с излучающей металличес­кой крышей (а) и резервуаром с водой (б):

/ — металлическая крыша; 2 — теплоизоляционные щиты (панели); 3 — резер-
вуар с водой

зультате конвекции воздуха и излучения стен и пола. Для усиления охлаждающего эффекта крышу можно орошать тонкой пленкой испаряющейся воды. Днем теп­лоизоляционные щиты закрывают крышу и предотвра­щают ее нагрев солнечной радиацией. Под крышей мож­но разместить теплоизолированную горизонтальную пе­регородку с отверстиями для циркуляции воздуха. В ночное время возникает конвективное движение воз­духа и при его контакте с излучающей крышей он охлаж­дается и соответственно охлаждает здание.

На металлической крыше дома могут быть размеще­ны резервуары с водой, имеющие передвижную тепловую изоляцию (рисл 43, б). Толщина слоя воды 50—100 мм. Ночью в результате излучения происходит охлаждение крыши и воды. Резервуары служат аккумулятором охлажденной воды и в дневное время закрываются теп­ловой изоляцией.

В условиях жаркого влажного климата требуется не только охлаждение, но и осушение воздуха с помощью адсорбента (силикагеля), который можно в виде тонко­го слоя разместить под металлической крышей. В бетон­ных стенах и полу предусматриваются каналы для цир­куляции воздуха. В ночное время воздух из помещений проходит над слоем силикагеля, поглощающего влагу. Выделяющаяся при этом теплота передается металличе­ской крыше и излучается ею в окружающее пространст­во — происходит охлаждение воздуха и корпуса дома. Днем клапаны перекрывают циркуляцию воздуха в сте­нах здания, а наружный горячий воздух, поступающий в пространство между слоем силикагеля и металличес­кой крышей, осушает силикагель и тем самым подготав­ливает его для ночного процесса.

За счет радиационного охлаждения можно покрыть не менее 25 % нагрузки охлаждения, а при использова­нии силикагеля и вентиляторов на потолке можно отво­дить 100 % избыточной физической и скрытой теплоты при температуре в помещениях выше 27 °С и относитель­ной влажности до 68 %.

Надежность теплохолодоснабжения повышается с включением в систему теплового насоса.

На рис. 44 показана схема комбинированной систе­мы теплохолодоснабжения здания с использованием теп­лового насоса типа воздух—воздух и воздушного солнеч­ного коллектора. В режиме отопления нагретый воздух

из солнечного коллектора поступает в галечный аккуму­лятор теплоты. Испаритель теплового насоса находится внутри аккумулятора, а конденсатор — в воздушном ка­нале распределительной системы отопления. Теплота, полученная рабочим телом в испарителе, вместе с энер-

image060

Рис. 44. Схема гелиотеплонасосной системы теилохолодоснабжения (в режиме отопления):

I — солнечный коллектор; 2 — галечный аккумулятор теплоты; 3 — вентилятор;
4 — компрессор; 5 — испаритель; 6 — дроссельный вентиль; 7 — конденсатор;
«— наружный воздух; 9 — воздух из помещения; 10 — сброс воздуха; II —
воздух а помещение; 12 — запорнорегулирующнй клапан

гией привода компрессора теплового насоса отводится в конденсаторе. Забираемый из помещения воздух, сме­шанный в определенном соотношении с наружным воз­духом, нагревается за счет теплоты, отбираемой от кон­денсатора теплового насоса, и вентилятором подается в помещение. В состав теплового насоса входит дроссель­ный вентиль.

В режиме охлаждения переключающие клапаны изме­няют направление движения воздуха во вторичном кон­туре. Горячий воздух из помещения охлаждается прн

прохождении через испаритель, в то время как воздух, используемый для отвода теплоты из конденсатора, вы­брасывается в атмосферу. Охлаждение галечного акку­мулятора происходит за счет циркуляции воздуха в кол­лекторе в ночное время.

В системе с тепловым насосом типа вода—вода, как правило, используются два бака-аккумулятора — один с горячей, а второй с холодной водой — и тепловой на­сос поддерживает заданную разность температур. Такая система надежно работает жарким летом с высокой ин­тенсивностью солнечной радиации, малым количеством осадков и низкой скоростью ветра. Ее можно применять в республиках Средней Азии.

Аккумулирование тепловой энергии может осуществ­ляться в одном баке, разделенном пергородкой на две секции: верхнюю-т-для горячей и нижнюю — для холод­ной воды. С помощью теплового насоса теплота из ниж­ней секции бака, где расположен испаритель, передается в верхнюю, в которой установлен конденсатор. В режиме отопления горячая водаі из верхней части бака направ­ляется в систему панельно-лучистого отопления. При ра­боте системы в режиме ^охлаждения вода в верхней сек­ции бака охлаждается в процессе ночного излучения теплоты коллектором, а для охлаждения помещения ис­пользуется более холодная вода из нижней секции бака, причем необходимую разность температур обеспечивает тепловой насор. Обычные кондиционеры воздуха можно рекомендовать лишь для районов с сухим жарким кли­матом. Во влажном климате необходимо применять спе­циальную установку для осушения воздуха. Использова­ние теплового насоса наиболее целесообразно в таких климатических зонах, где отсутствуют большие колеба­ния летних и зимних температур воздуха и тепловые на­грузки систем отопления и охлаждения приблизительно одинаковы. В этих условиях тепловой насос использует­ся круглогодично с полной загрузкой.

На рис. 45 показана схема абсорбционной водо-амми­ачной гелиосистемы охлаждения здания. В этой системе аммиак служит хладагентом, а вода — абсорбентом. На­гретый в солнечном коллекторе теплоноситель с темпера­турой 80 °С поступает в генератор. Из абсорбера силь­ный раствор хладагента (аммиака) в воде подается на­сосом в теплообменник, где нагревается до температуры 70 °С и поступает в генератор, в котором при нагревании

Подпись: J Рис. 45, Схема водо-аммиачной гелиосистемы кондиционирования воздуха:

из раствора выделяется аммиачный пар. Слабый раствор аммиака через теплообменник стекает в абсорбер, а па­ры аммиака с температурой 75 °С после отделения ка­пелек воды направляются в конденсатор. Из конденса­тора жидкий хладагент через дроссельный вентиль по­ступает в испаритель, где он отбирает теплоту у воздуха (воды) и снова превращается в пар, а охлажденный воз­дух (вода) направляется в помещение. Пары аммиака поступают в абсорбер и поглощаются слабым раствором.

I — солнечные коллектор; І — генератор; 3 — конденсатор; 4 — испаритель;

5 — абсорбер;, 6 — теплообменник; 7 — насос; в — вентиль; 9 — наружный воз-
дух; 10 — охлажденный воздух; // — холодная вода; 12 — горячая вода

Теплота, выделяющаяся в абсорбере и конденсаторе, от­водится с помощью воды, охлажденной в градирне. В ре­зультате получается нагретая вода. Сильный раствор на­сосом подается через теплообменник в генератор.

В гелиосистеме, показанной на рис. 46, хладагентом служит вода, а абсорбентом — бромистый литий. При подводе теплоты в генераторе происходит испарение во­ды. Хладагент — перегретый водяной пар — направляет­ся в конденсатор. Образующийся конденсат проходит через дроссельный вентиль в испаритель, а затем цар поступает в адсорбер, где он смешивается с концентриро­ванным раствором бромистого лития, стекающим из гене­
ратора через теплообменник и дроссельный вентиль. В испарителе и абсорбере поддерживается разрежение. Теплота из абсорбера и конденсатора отводится водой, охлажденной в градирне. Предусмотрен бак холодной воды, и осуществляется подпитка.

В генераторе поддерживается температура в преде­лах 77—99 °С, в абсорбере и конденсаторе — порядка 40 °С, а в испарителе —около 5 °С. При испарении воды в испарителе происходит охлаждение воздуха или воды.

image062

Рис. 46. Схема бромисто-литиевой гелиосистемы кондиционирования

воздуха:

/ — коллектор: 2 — теплообменник; 8 — аккумулятор теплоты; 4 —котел; 5 —
генератор: 6 — испаритель; 7 —абсорбер; 8 — конденсатор; 9 — градирня; 10 —
охладитель воздуха вентилятором

Слабый раствор из абсорбера направляется в генератор, и цикл повторяется. Теплообменник используется для подогрева слабого раствора за счет теплоты, отнимаемой у концентрированного раствора.

В соответствии с рис. 46 из солнечного коллектора че­рез теплообменник или непосредственно теплота пере­дается в бак-аккумулятор. Циркуляция теплоносителя в контуре коллектора й аккумулятора осуществляется посредством насоса Н4 и Н5. Горячая вода из бака-ак­кумулятора поступает в котел, затем подается насосом Н2 в генератор, а из него — в нижнюю часть аккумуля­тора и через трехходовой вентиль — в котел. Этот вен­тиль предотвращает попадание теплоты из котла в акку­мулятор. Охлаждающая вода из градирни насосом НЗ подается в абсорбер и конденсатор, прн этом ее темпе­ратура возрастает с 24 до 32 °С. Насос Н1 подает охлаж­дающую воду для охлаждения воздуха, подаваемого вен­тилятором в здание.

Для установки мощностью 10 кВт требуется солнеч­ный коллектор площадью 50 м2 (при КПД 34 %), она стоит около 15 тыс. руб., в то время как обычный элек­трический кондиционер — 800 руб.

Баланс энергии бромисто-литиевой установки мощно­стью 10 кВт характеризуется следующими величинами мощности потока теплоты (<р=0,8): генератор —

12,5 кВт, конденсатор — 10,55 кВт, абсорбер — 11,95 кВт, градирня — 22,5 кВт.

Во всем мире имеются памятники древней архитекту­ры, свидетельствующие о том, что строители всегда стре­мились придавать зданиям такую форму, размещать их и ориентировать отдельные элементы (внутренние про­странства, двери, окна и т. д.) таким образом, чтобы максимально использовались преимущества климата и ландшафта, а при определении теплового комфорта учитывалась роль деревьев, растительности и водоема, расположенного вблизи здания. В конструкциях зданий часто используются массивные стены и реализуется стремление уменьшить отношение поверхности здания к его объему для снижения колебаний температуры воз­духа в помещениях.

Применение в современных солнечных домах систем для использования солнечной энергии определяет особен­ности их архитектуры, сказывается на ориентации зда­ния, положении его элементов относительно южного на­правления и плоскости горизонта, определяет выбор ма­териалов и конструкций ограждений и т. п. Рассмотрим особенности архитектурно-планировочных и конструктив­ных решений домов с гелиосистемами теплоснабжения и проанализируем решения ряда солнечных домов, опыт создания которых мОжет оказаться полезным при строи­тельстве индивидуальных жилых домов с гелиосисте­мами.

Во многих странах мира все более возрастает инте­рес к солнечной или биоклиматической архитектуре. При этом возникают новые решения, которые нередко расхо­дятся с традиционными представлениями классической архитектуры.

Помимо всех требований, предъявляемых к совре­менному жилищному строительству, солнечная архитек­тура должна обеспечивать улавливание максимального количества солнечной энергии в зимний период с целью снижения потребления топлива. В солнечных домах ис­пользуются пассивные и активные гелиосистемы. В пас­сивных системах солнечная энергия улавливается и аккумулируется в ограждающих конструкциях самого здания: в полу, стенах, потолке. Архитектурно-планировоч­ные решения солнечных домов определяются особенно­стями климатических условий и имеют специфику в хо­лодном и жарком сухом или влажном климате.

Первая пассивная гелиосистема была запатентована в США в 1881 г. Это был патент на остекленную южную стену темного цвета. В 1972 г. она была вновь запатенто­вана во Франции и по именам изобретателя и архи­тектора получила название стены Тромба — Ми­шеля.

В СССР построен ряд солнечных дОмов в южных рай­онах. По разработке институтов ИВТАН и Армгипросель — хоз в п. Мерцаван (Армения) в 1981 г. построен экспери­ментальный жилой одноквартирный дом с активной солнечной установкой теплоснабжения, Включающей плос­кий КСЭ площадью 32,4 мг, аккумулятор теплоты и си­стему КИП. Гелиоустановка покрывает до 55 % годового теплопотребления дома и обеспечивает годовую эконо­мию топлива до 3 т условного топлива. Сметная стои­мость гелиоустановки (5,5 тыс. руб.) составляет 15,5 % стоимости дома.

Солнечный двухквартирный дом эксплуатируется в п. Ильичевск Ташкентской обл. Каждая квартира жи­лой площадью 63 м2 снабжена независимой системой сол­нечного теплоснабжения, которая включает КСЭ пло­щадью 56 м2, установленный под углом 70° перед южным фасадом здания, аккумулятор теплоты емкостью 4 м3 (запас теплоты на 2—3 дня) на базе водонагревателя СТД-3071, отдельный бак горячей воды емкостью 0,4 м3 на базе водонагревателя СТД-3070, насос ЦВЦ-6,3-3,5 и водонагреватель-дублер КЧМ-1м на природном газе. Отопительные приборы — конвекторы «Комфорт-20». Не­токсичный недорогой и не вызывающий коррозии неза­мерзающий теплоноситель НОЖ-2 используется в конту­ре КСЭ, аккумуляторе теплоты и отопительных прибо­рах.

Циркуляция теплоносителя в контуре КСЭ — прину­дительная, а в системе горячего водоснабжения и в кон­туре аккумулятора — отопительных приборов —естест­венная. За отопительный сезон обеспечивается около 30% нагрузки теплоснабжения, а за 7 мес теплого пери­ода— 100% нагрузки горячего водоснабжения.

Гелиоустановка пансионата в г. Геленджике эконо­мит 355 т условного топлива в год, что эквивалентно эко­номии 20 900 руб. в год. Разработаны и строятся экспе­риментальные четырех-пятикомнатные жилые дома в Армении и Дагестане с площадью застройки 125 м2, отап­ливаемой площадью, до 95 м2 и объемом 264 м3. При площади солнечного коллектора 32 и 58 м2 расчет­ная доля солнечной энергии в покрытии нагрузки теп­лоснабжения равна соответственно 0,41 и 0,71. Сметная стоимость дома равна 32 тыс. руб. Ожидается, что в год будет экономиться соответственно 1,3 и 3,2 т условного топлива.

Экспериментальный дом фирмы «Филипс» (ФРГ; г. Аахен, 50,5° с. ш.) жилой площадью 116 м2 и объемом 290 м3 (рис. 37, а) оборудован эффективной системой для использования солнечной энергии, теплоты грунта и ути­лизации теплоты сточных вод и удаляемого вентиляцион­ного воздуха. Поставленная при проектировании цель снижения теплопотерь здания была достигнута путем применения улучшенной теплоизоляции стен, двойного остекления окон с отражательным для инфракрасного

image052

1 — солнечный коллектор; 1 — аккумулятор теплоты; 3 — бак для сбора сточ­ных вод; 4 — бак горячей воды; 5 — тепловой насос; б —душ; 7 — отопитель­ные приборы; 8 — мини-ЭВМ; 9 — вентилятор: 10 — электросеть; 11 — вспомо­гательная стенка; Т1—Т6 — теплообменники; И и К — испаритель и конденса­тор теплового насоса; ХВ и ТВ — холодная и горячая вода; ИВ — использо­ванная вода; В а УВ — свежий н удаляемый воздух; ВО — воздушное отопле­ние; Н1~НЗ — насосы

излучения покрытием, уменьшения нерегулируемой ин­фильтрации воздуха и организации принудительной вен­тиляции. Благодаря изоляции стен слоем минеральной ваты толщиной 250 мм по сравнению со стандартным домом коэффициент теплопередачи через стены снизился с 1,23 до 0,14 Вт/(м2-К), а для окон площадью 23,5 м2— с 5,8 до 1,5 Вт/(м2-К). При этом годовая потребность в теплоте для отопления уменьшилась в 6 раз и состав­ляет 8,3 МВт-ч вместо 49,6 МВт-ч.

Дом используется для проведения исследований и обо­рудован гелиосистемой, тепловым насосом и теплоутили­зационными устройствами (рис. 37,6). Гелиосистема включает коллектор солнечной энергии площадью 20 м2, сезонный водяной аккумулятор теплоты емкостью 40 м3 для отопления и бак объемом 4 м3 для подогрева воды. Вода, нагреваемая в коллекторе до 95 °С, посредством теплообменника Т1 передает теплоту воде в аккумулято­ре. Тепловой насос использует теплоту сточных вод, со­бираемых в баке 3 емкостью 1 м3, в котором размещен испаритель И теплового насоса, а его конденсатор К рас­положен в баке 4 вместе с электронагревателем.. Тепло­вой насос также отбирает теплоту от грунта с помощью теплообменника Т5, расположенного под домом в земле. Тепловой насос имеет два испарителя (Я и Т5), и его коэффициент преобразования равен 3,5—4 в диапазоне температур 15—>50 °С при мощности привода компрессо­ра 1,2 кВт. С помощью насоса НЗ ц трубопроводов акку­мулятор теплоты соединяется с баком 4, а через него — с тепловым насосом 5 и баком 3. В доме предусмотрена вспомогательная стенка, сообщающаяся с грунтом и ис­пользуемая для подогрева (зимой) и охлаждения (ле­том) воздуха (В), поступающего в здание.

Система может работать в различных режимах, и уп­равление ею осуществляется с помощью мини-ЭВМ.

Для отопления здания теплота подается к радиато­рам из сезонного аккумулятора посредством теплообмен­ника Т2. Аккумулятор заряжается до температуры 95 °С от солнечного коллектора посредством теплообменника 77 или от теплового насоса. Вентиляция здания осуще­ствляется воздухом (В), подогретым в утилизационном теплообменнике Тб, удаление воздуха (УВ) производит­ся вентилятором. Для горячего водоснабжения вода, по­даваемая в душ, вначале подогревается в теплообменни­ке ТЗ, размещенном в баке 3 утилизации теплоты сточ­
ных вод, а затем догревается до 55 °С в теплообменнике Т4 в баке 4 за счет теплоты, подводимой от коллектора солнечной энергии или от теплового насоса. Аккумуля­тор, баки, два насоса (Н2 и НЗ) и тепловой насос раз­мещены в подвале, ЭВМ и один насос (HI) — в мансар­де. Охлажденная использованная вода (ИВ) отводится в канализацию.

Коллектор (рис. 38) выполнен из 18 модулей и раз­мещен на южном скате крыши. Модуль КСЭ представ­ляет собой вакуумированный стеклянный баллон, верх­няя часть внутренней поверхности которого имеет покры-

Подпись:Рис. 38. Вакуумированный стек-
лянный трубчатый коллектор (в
разрезе):

I — стеклянная труба; 2— теплоотра­жательное покрытие; 3 — зеркальный слой; 4 — приемник солнечного излу­чения; 5 — труба для нагрева теплоно­сителя

тие, отражающее тепловое излучение, а нижняя часть покрыта посеребренным слоем, отражающим солнечные лучи на приемник, который изготовлен из покрытой чер­ной стеклянной эмалью U-образной трубы для нагрева­емого теплоносителя (воды). Оптический КПД коллек­тора равен 0,76, а коэффициент теплопотерь 1,5 Вт/ /.(м2-°С).

Дом с нулевой потребностью в топливной энергии, по­строенный в 1975 г. в г. Копенгагене (55°43 с. ш., Да­ния), имеет площадь 120 м2 и объем 300 м3. Он состоит из двух блоков с плоской крышей, соединенных жилой комнатой со стеклянной крышей, на которой размещается КСЭ площадью 42 м2. Стены, пол и потолок дома име­ют тепловую изоляцию из минеральной ваты толщиной 0,3—0,4 м, причем она с обеих сторон обшита фанерой с водоотталкивающим покрытием. Окна снабжены теп­лоизолирующими ставнями. Свежий воздух в здание по­дается вентиляционной системой. Теплота из КСЭ пере­дается в подземный бак-аккумулятор объемом 30 м3 с толщиной слоя минеральной ваты 0,6 м. Летом осуще­ствляется вентиляция через остекленный проем в крыше.

Коэффициент теплопотерь стен равен 0,14 Вт/(м2-°С), годовая тепловая нагрузка отопления составляет 2300 кВт ч, а горячего водоснабжения 3050. кВт-ч. Годо­вая теплопроизводительность солнечного коллектора равна 9017 кВт-ч, 25 % этого количества теплоты исполь­зуется для отопления, 34 % — Для горячего водоснабже­ния, а 41 % составляют теплопотери аккумулятора.

При строительстве жилых домов, в которых предпо­лагается использование солнечной энергии для отопле­ния, необходимо учитывать следующие положения: солнечный дом должен быть спроектирован таким об­разом, чтобы обеспечивалось максимально возможное улавливание солнечной энергии в холодное время года и минимальное ее поступление внутрь дома летом;

дом должен иметь небольшие тепловые потери, что обеспечивается применением улучшенной тепловой изо­ляции в стенах, полу, потолке, а также уменьшением не­контролируемого поступления холодного наружного воз­духа и организацией принудительной регулируемой вен­тиляции для поддержания требуемого тепловлажностно­го режима помещений;

по возможности солнечный дом не должен иметь окон в северной стене, а если этого избежать ие удается, то их площадь должна быть небольшой;

в индивидуальном доме северная стена может быть полностью или частично засыпана землей (постоянно или только зимой), то же относится (в меньшей мере) к вос­точным и западным стенам;

потери теплоты через окна в ночное время могут быть существенно снижены благодаря применению ставней или в крайнем случае плотных штор;

потери теплоты вследствие проникновения холодного воздуха должны быть сведены к минимуму путем уплот­нения всех щелей и устройства тамбура у входной двери;

солнечный дом должен иметь компактную двух-трех — этажную конструкцию, чтобы приблизиться к оптималь­ному соотношению его объема и наружной поверхности.

Рассмотрим примеры конструктивного выполнения ряда солнеч­ных домов, построенных в различных странах, опыт которых можно позаимствовать. Южная вертикальная стена двухэтажного жилого дома в г. Доувер (штат Массачусетс, США, 42° с. ш.) площадью 135 и* служит солнечным коллектором для нагрева воздуха (рис. 39). Аккумулирование теплоты осуществляется с помощью глаубе­ровой соли (кристаллогидрата сульфата натрия), которая плавится при подводе теплоты и затвердевает при ее отводе (при 32°С). Ко­личество аккумулируемой теплоты достаточно для покрытия тепло — потребления дома-в течение 10 дней.

Дом в г. Денвер в горахмітата Колорадо (40° с. ш., США) жи­лой площадью 186 м! снабягеч воздушным солнечным коллектором площадью 56 иг. установленным на крыше (рис. 40,а). Коллектор состоит из наполовину зачерненных стеклянных пластин, установлен-

image054

image055

Рис. 39. Дом (а) и схема гелиосистемы отопления (б):

I — коллектор; ? — циркуляция воздуха; 3 — аккумулятор теплоты

ных друг над другом в наклонном положении в теплоизолированном корпусе с прозрачной крышкой (рис. 40,6). Воздух нагревается при движении между стеклянными пластинами и вентилятором подается в аккумулятор теплоты, представляющий собой два вертикальных цилиндра диаметром 0,9 и высотой 5,5 м, заполненных 6 т кусков гранита (рис. 40, в). Доля солнечной энергии в покрытии тепловой нагрузки отопления составляет 0,3.

. Другой вариант конструкции жилого дома с пристроенным к южному фасаду зимним садом (оранжереей) и солнечным коллек-

image056

Рис. 40. Внешний вид дома (а), солнечный коллектор (б) и схема гелиосистемы (в):

6: / — корпус; 2 — теплоизоляция; 3 — стеклянные пластины; 4 — стекло;
в: / — коллектор: 2 —аккумулятор теплоты; 3 — вентилятор; 4 — воздуховод;
5 — распределение, теплого воздуха

тором на крыше показан на рис. 41, о. Гибридная пассивно-активная гелиосистема предназначена для отопления и горячего водоснабже­ния. Недостающая энергия подводится от электронагревателей, раз­мещенных в баке-аккумуляторе системы горячего водоснабжения и внутри отапливаемых помещений. Включение и выключение элект­ронагревателей происходит автоматически по сигналу, поступающе­му от системы управлення, содержащей датчики температуры, регуляторы и термостаты, Схема гелиосистемы приведена на рис, 41,6.

image057

Рис. 41. Дом с гибридной гелиосистемой отопления:

а — внешний вид дома; б — схема гелиосистемы; 1 — солнечный коллектор на ирыше дома; 2 — расширительный бак; 3 — аккумулятор-подогреватель с элект­рическим дублером; 4 — регулятор; 5 — вентиль; 6 — насос; 7 — аккумулятор с теплообменником; 8 — радиаторы; 9 — электронагреватель; 10 — датчик тем­пературы

Комментарии запрещены.